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Abstract. The layer correlations in main-chain smectic liquid-crystal polymer and elastomer systems have
been studied using high-resolution X-ray scattering. In contrast to side-chain smectic polymers, in main-
chain systems the polymer chains are oriented parallel to the layer normal. As a result they couple directly
to the lamellar structure and any polymer defect is translated into layer distortions. For the homopolymers
the resulting X-ray lineshapes are well described by Lorentzians. This is interpreted as an average of
algebraically decaying order in domains with dimensions of hundreds of nm and a wide dispersion of sizes.
The elastomers show much broader peaks than the correponding polymers. This is attributed to strong
non-uniform strain within the finite-size domains due to defects of the layer structure.

PACS. 64.60.Cn Order-disorder transformations; statistical mechanics of model systems – 61.10.Eq X-ray
scattering (including small-angle scattering) – 61.41.+e Polymers, elastomers, and plastics – 61.30.Eb
Experimental determinations of smectic, nematic, cholesteric, and other structures

1 Introduction

Long-range translational order can be strongly disrupted
when a system is exposed to an external random field [1].
At large enough length scales imposing even weak disorder
can destroy the translational symmetry. Classical exam-
ples stem from the pinning of flux vortex lattices in a su-
perconductor by impurities [2] and from magnetism (dis-
ordered Ising magnets) [3]. Here we are concerned with
more recent applications to liquid-crystal (LC) physics,
in particular to smectic systems that consist of regular
stacks of fluid monolayers. Clark and coworkers [4] have
shown that when monomeric smectic systems are con-
fined to aerogels, the random field imposed by the con-
finement reduces the smectic layer correlations to short
range. Smectic monomers [5] and polymers [6] provide in-
teresting model examples for various types of transitions
because of the low-dimensional character of their order-
ing. The associated fluctuations cause the mean-squared
displacements of the layer positions to diverge logarith-
mically with the system size [1,7,8] (Landau-Peierls in-
stability). As a result the positional correlation function
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describing the smectic layer periodicity decays at large
distances as r−η, the exponent η being small and pos-
itive (quasi-long-range order). Smectic polymers can be
crosslinked to form smectic elastomers [9]. In earlier work
we showed that the internal random field of distortions
due to this process can again lead to disorder, but only at
relatively large crosslink density [10,11].

The quasi-long-range order of conventional smectic
systems can be studied by high-resolution X-ray scatter-
ing. Instead of delta-function–type Bragg peaks with dif-
fuse tails characteristic of a three-dimensional (3D) crystal
periodicity, Caillé lineshapes with an asymptotic power

law form q−2+n2η are observed [1,12,13]. Here n repre-
sents the harmonic number of the quasi-Bragg peak. The
scaling of the exponent η with n2 is an important experi-
mental signature of quasi-long-range order. As these argu-
ments are essentially related to the layer symmetry, they
apply equally well to smectic-A systems (Sm-A, density
wave parallel to the layer normal) as to smectic-C sys-
tems (Sm-C, density wave tilted with respect to the layer
normal). This general behaviour of low-molecular-mass
smectics is essentially conserved in smectic polymers [14].
When in turn LC polymers are weakly crosslinked into
an elastomer network, the macroscopic rubber elastic-
ity [9] interacts with the smectic LC order. This gives
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(a)                    (b)                      (c)                       (d)

Fig. 1. Cartoons of a main-chain smectic polymer. (a) Text-
book picture; (b) end defect; (c) hairpin; (d) entangled hairpin.

rise to a rich behaviour that has been well studied for
smectic side-chain elastomers. First, crosslinks suppress
long-wavelength fluctuations leading to the possibility of
true long-range order [15,16]. Second, crosslinks prefer-
entially reduce the smectic density around their position,
giving rise to a random field of defects that can destroy
the smectic order [10,17,18]. In contrast to smectic side-
chain elastomers very little is known about the order in
smectic main-chain systems.

In side-chain smectic LC polymers and elastomers the
polymer backbone is approximately confined (or at least
concentrated) in 2D to the space in between the smectic
layers. In that situation the overall polymer structure can
be either prolate or oblate (see Ref. [19] for a review). Nev-
ertheless due to the freedom in 2D, polymer conformations
and defects are not expected to interact directly with the
smectic layer order. This can be contrasted with main-
chain smectic polymers (Fig. 1a) that consist of alternat-
ing flexible polymer parts and rigid smectogenic elements.
Now the polymer chain is not only on average oriented par-
allel to the smectic layer normal but also connecting the
smectic layers. As a result, polymer defects are expected
to be directly translated into layer distortions (Fig. 1b–d).

In this paper we discuss the nature of the ordering
in smectic main-chain systems, both polymers and elas-
tomers, elaborating on and correcting an earlier commu-
nication [20]. The layer diffraction from the homopoly-
mers can be —somewhat unexpectedly— described by
a Lorentzian lineshape that is interpreted as an aver-
age of algebraically decaying order in domains of the or-
der of hundreds of nm and with a wide dispersion of
sizes. The elastomers show much broader peaks; this is
attributed to strong nonuniform strain due to lattice de-
fects reducing the apparent dimensions of the finite-size
domains to tens of nm.

2 Experimental

The main-chain smectic polymer and elastomer systems
used in this study are depicted in Figure 2 together with
their phase behaviour. The first system [21] (denoted as
MC11; from Freiburg) has Mn ≃ 14000, Mw/Mn ≃ 2.8
and an average degree of polymerization DP ≃ 20 with

Fig. 2. Molecular structure of the main-chain smectic polymer
MC11 (a), MeHQ (b) and TR5 (c). The polymer structure as
given at the left is converted to the elastomer by adding about
10% of the crosslinker at the right.

for MC11-el about 10% crosslinks. Note the mutifunc-
tional character of the crosslink unit that can connect up
to five polymer chains. At temperatures above 40–50 ◦C
a tilted Sm-C phase is observed. Oriented elastomer sam-
ples (typically 20 × 10mm2 and 0.5mm thick) were ob-
tained through uniaxial deformation during the comple-
tion of the network. The Sm-C layers were arranged coni-
cally under a tilt angle with respect to the direction of the
applied stress (texture axis: long direction of the sample).
The second example (denoted as MeHQ; from Atlanta)
has Mn ≃ 24600, Mw/Mn ≃ 2.1 and an average degree
of polymerization DP ≃ 17 with for MeHQ-el about 10%
crosslinks. It is chemically rather similar to MC11 but
has the Sm-C phase at room temperature. However, note
that the rigid mesogenic groups now are connected by
an alkyl chain to a short siloxane polymer. Hence com-
pared to MC11 the mesogenic groups in MeHQ are much
more weakly coupled. In this case the elastomer sample
was strained up to 200%. The uniform orientation thus
obtained is maintained at room temperature: plastic de-
formation starts at about 45%. The original length can
recover in aid of heat or appropriate solvent. The third
and final system (denoted as TR5; from Atlanta) has a
Sm-A phase below about 50 ◦C. For this material the long
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direction of the sample coincides with the layer normal.
This material is rather peculiar because of the presence of
transverse pentaphenyl rods [22]. To maintain the Sm-A
symmetry the rods are expected to orient locally parallel
to the smectic layer normal, similarly in laterally substi-
tuted low-molecular mass systems [23]. As was found for
MeHQ-el, the TR5-el maintains a uniform orientation at
room temperature after stretching. In conclusion all three
elastomer samples could be investigated in a uniformly
aligned smectic state in a transmission X-ray geometry;
MC11 at 60 ◦C, MeHQ and TR5 at room temperature.

Homopolymer films were prepared at temperatures
close to the smectic-isotropic transition by moving a
spreader over a drop of material on a glass substrate to
give films with a thickness of about 100µm. Though the
uniformity was rather variable, X-ray data could easily be
taken in a reflectivity configuration.

The samples were preliminary characterized using an
in-house setup with a rotating anode X-ray generator
(Rigaku RU-300H, 18 kW) equipped with two parabolic
multi-layer mirrors (Bruker, Karlsruhe), giving a highly
parallel beam of monochromatic CuKα radiation (λ =
0.154 nm) with a divergence of about 0.02 ◦. The smectic
layer structure could easily be determined using a 2D de-
tector (Bruker Hi-star) at a distance of about 0.6m from
the sample stage. More importantly, the in-plane order
in the WAXS region was recorded by a linear position-
sensitive detector (PSD-50M, M. Braun, Germany), which
could be rotated around the beam path to measure in ei-
ther the meridianal or the equatorial direction.

High-quality X-ray lineshapes of the layer correlations
were taken at the Exxon beamline X10A at the National
Synchrotron Light Source, Brookhaven National Labora-
tory (Upton, NY, USA) and at beamline W1 of Hasylab
(DESY, Hamburg, Germany). In both cases 8 keV ra-
diation was used corresponding to a wavelength λ =
0.155 nm. The wave vector transfer is given by q = kf−ki,
where kf and ki are the outgoing and incoming wave vec-
tor, respectively, with q = |q| = (4π/λ) sin θ, 2θ being the
scattering angle. The scattering plane ((z, x)-plane) was
vertical with the qz-axis initially parallel to the smectic
layer normal. Hence for a Sm-A phase quasi-Bragg peaks
of harmonic number n were measured in the reciprocal
space along qz at positions qn, while the mosaic distribu-
tion was determined by transverse (rocking) curves vary-
ing qx at different qz = qn. In case of a Sm-C phase the
sample was rotated over the tilt angle with respect to the
texture axis. This brings one of the Sm-C layer reflections
from the cone distribution along qz, leading to a situation
similar as for Sm-A.

The instrumental resolution in the scattering plane
was set by a double-bounce Ge(111) (at the NSLS)
or Si(111) monochromator (at Hasylab) and a double-
or triple-reflection channel-cut Ge(220) or Si(111) an-
alyzer crystal in a non-dispersive configuration. The
resulting resolution function was close to a Gaussian
with ∆qz = 0.004 nm−1 (full-width-at-half-maximum,
FWHM). The resolution function along qx could be taken
as a δ-function. Out of the scattering plane the resolution

 (a)  

  (b) 

Fig. 3. X-ray picture of the elastomer MC11-el at 23 ◦C (a)
and 70 ◦C (b).

was set by slits to ∆qy = 0.02 nm−1. The incident inten-
sity was about 5×109 cts/s; the beam size was 0.5×1mm2

(V×H). All data were normalized, resolution corrected
and background subtracted. The latter point is a crucial
aspect for the present precise lineshape measurements in-
cluding the tails of the peaks. It requires to distinguish
the q-dependent spatial background in the hutch from the
time-dependent dark current of the scintillation counter.
This was done by calculating the normalized q-dependent
background by substracting the time dependent part. Af-
ter correcting the data for this “bare” background, sub-
sequently the time-dependent part was subtracted taking
the actual measurement time into account.

3 Results

3.1 Characterisation of the smectic phases

Figure 3 gives a photographic X-ray overview of the
MC11-el system that clearly shows the splitting off-axis of
the smectic peak typical for a Sm-C phase. The in-plane
scattering of Figure 4 indicates for both the homopolymer
and the elastomer crystalline ordering below the phase
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Fig. 4. In-plane order of the smectic layers of the homopolymer
MC11-pol (a) and the elastomer MC11-el (b).
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Fig. 5. Smectic layer period for two different samples of the
homopolymer MC11-pol (open and filled symbols). The ver-
tical line indicates the phase transition temperature. Circles:
heating; triangles: cooling.

transition around 50 ◦C. The splitting into two peaks, cor-
responding to periodicities of 0.42 and 0.44 nm, respec-
tively, points to a tilted crystalline phase with a rectan-
gular in-plane lattice. For the homopolymer the finite-size
broadened crystalline peaks can be fitted by Gaussians
leading to a domain size of ∼ 15 nm. Above the tran-
sition liquid peaks are observed that can be fitted by a
Lorentzian centered at q = 14nm−1 (2π/q = 0.45 nm) and

   (a) 

  (b) 

Fig. 6. X-ray picture of the elastomers MeHQ-el (a, Sm-C) and
TR5-el with pentaphenyl transverse rods (b, Sm-A) stretched
at room temperature.

a correlation length of ∼ 1 nm. The in-plane melting leads
to a decrease of the smectic layer period as shown in Fig-
ure 5. Because of these results, we have chosen a temper-
ature of 60 ◦C for the investigation of the Sm-C lineshape.

In Figure 6a we show an X-ray overview of the
MeHQ-el system at room temperature. The general be-
haviour is very much the same as observed for MC11-el at
higher temperatures: Sm-C with liquid in-plane ordering.
However, in addition to the strong equatorial liquid peak
an additional ring is visible at smaller angles with some
increased intensity along the equator. The corresponding
period of 0.7 nm is typical for siloxanes and indicates some
form of lamellar micro-phase separation of the central
siloxane parts. The corresponding homopolymer MeHQ-
pol displays a sharp smectic peak and a broad in-plane
one (not displayed), indicating stacked liquid layers at a
period of 4.5 nm. Finally we give in Figure 6b an overview
of the TR5-el system. Along the meridian we note a large
number of harmonics indicating strong Sm-A order with
again a liquid in-plane structure. At large q-values the sit-
uation is more complicated, which is related to the packing
of the transverse rods. This is an interesting problem by
itself, but outside the scope of this work for which only the
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Sm-A symmetry of the phase is of importance. The poly-
mer TR5-pol showed below the transition to the isotropic
phase at 52 ◦C stacked crystalline layers with either a sin-
gle or a double periodicity (3.15 and 6.3 nm, respectively).
The latter structures depended on the history of the sam-
ple and have not been further investigated.

3.2 Lineshape analysis

The total intensity measured in X-ray scattering of smec-
tic systems can be written as the following convolution of
various factors [24]:

I(q) = S(q) ⊗ H(q) ⊗ F (q⊥) ⊗ R(q). (1)

In this equation S(q) is the smectic structure factor, H(q)
stands for broadening due to finite sizes, F (q⊥) represents
the effect of the mosaic distribution that can me mea-
sured in-plane along q⊥ while finally R(q) results from
the resolution of the diffractometer. In principle all these
contributions can be incorporated in an effective exper-
imental resolution function R′(q) = F ⊗ H ⊗ R with a
different full-widt-at-half-maximum (FWHM) in all three
dimensions. Deconvolution of the experimental data with
R′(q) then provides the required determination of S(q).

Size effects come in because the stacking of smectic
layers in real samples is limited: the maximal domain size
observed in low-molecular-mass thermotropic smectics is
of the order of some tens of µm. From our previous expe-
rience with side-chain siloxane elastomers [10,11] we know
that the distribution and magnitude of the domains along
the layer normal, H(z), are of prime importance for the
lineshape analysis. Depending on the polymer topology
and/or crosslink density the domain size distribution func-
tion can be either narrow or rather broad. To describe
this variable situation empirically, we have introduced a
stretched Gaussian correlation function of the form

G(z) ∝ exp

[

−
(

σ2z2
)β

2β

]

, (2)

in which the parameter β determines the degree of stretch-
ing. Such a stretched Gaussian (or compressed exponen-
tial) interpolates between a Gaussian for β = 1 and an
exponential correlation for β = 0.5. While the Fourier
transform of a Gaussian is still a Gaussian, exponential
correlation leads in 1D to a Lorentzian structure factor:

I(q) ∝
[

(

q − q0

)2
+ k2

]−1

, (3)

with a correlation length ξ = k−1. Figure 7 illustrates
the relatively narrow distribution and the very broad one
corresponding to these limiting cases. Intermediate val-
ues of β evidently lead to less pronounced wings than
found for a pure Lorentzian. Figure 8 shows that over the
whole range of q-values the lineshape is strongly influenced
by the contribution of the stretched Gaussian. Figure 8a
demonstrates the effect of the degree of stretching (de-
creasing value of β) on the tails of the peaks; Figure 8b
indicates how the various harmonics are affected.
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Fig. 7. Model domain sizes distributions. Broken line cor-
responds to a distribution resulting in exponential decay
(β = 0.5), solid line to a distribution resulting in a Gaussian
(β = 1.0).
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Fig. 8. Model profiles showing the disappearance of the frac-
ture in the lineshape for η = 0.12 and a fixed finite size
∆qz = 0.01 nm−1 (L = 0.6 µm). (a) First-order lineshape
for a stretched Gaussian with different β-values as indicated.
(b) Variation of lineshape with harmonic number.

The finite-size determined center of the X-ray peaks
continues at larger values of qz −qn into a slope controlled
by the mosaic distribution. If this distribution is small one
can clearly identify the limiting Caillé slope determined by
the exponent 2−n2η. Alternatively for a “powder” distri-
bution of orientations 1− n2η applies. In the present case
we have rather uniformly oriented samples but still with
relatively large mosaic distributions, which makes it some-
what questionable whether the first limit can be reached.
The problems involved in a complete description in terms
of equation (1) have been discussed in some detail else-
where [11]. Here we shall restrict ourselves to an empirical
approach and concentrate on the finite size effect and the
Caillé limit.

With these considerations in mind we present in the
next series of figures in some detail the X-ray lineshapes
of the various harmonics of the different samples. We shall
systematically give combinations of two figures: first a
conventional X-ray peak (intensity I vs. qz) is shown,
normalized to the maximum intensity on a logarithmic
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Fig. 9. First-order (a, b) and second-order (c, d) peak of the homopolymer MC11-pol in the Sm-C phase at 60 ◦C. Left panels:
Lorentzian fit in blue, stretched Gaussian correlation (β = 0.54) in red. Right panels: Gaussian in black, large-q Caillé limit in
blue, broken line indicates the direct beam.
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Fig. 10. First-order (a, b) and second-order (c, d) peak of the elastomer MC11-el in the Sm-C phase at 60 ◦C. Left panels:
Lorentzian fit in blue, stretched Gaussian correlation (β = 0.71) in red. Right panels: Gaussian in black, broken line indicates
the direct beam. No consistent Caillé limit can be given.
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Fig. 11. First-order (a, b) and second-order (c, d) peak of the homopolymer MeHQ-pol in the Sm-C phase. Left panels:
Lorentzian fit in blue, stretched Gaussian correlation (β = 0.61 and 0.65, respectively) in red. Right panels: Gaussian in black,
large-q Caillé limit in blue, broken line indicates the direct beam.
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Fig. 12. First-order (a, b) and second-order (c, d) peak of the elastomer MeHQ-el in the Sm-C phase. Left panels: Lorentzian
fit in blue, stretched Gaussian correlation (β = 0.71) in red. Right panels: Gaussian in black, large-q Caillé limit in blue, broken
line indicates the direct beam.
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Fig. 13. Lineshape for three harmonics of the elastomer TR5-el in the Sm-A phase. Left panels: Lorentzian fit in blue, stretched
Gaussian correlation (β = 0.82 and 0.71, respectively) in red. Right panels: Gaussian in black, large-q Caillé limit in blue, broken
line indicates the direct beam.

scale. In addition a double-logarithmic figure is given em-
phasizing the behaviour of the tails. Figures 9 and 10 show
the lineshape results for two harmonics from the Sm-C
lamellar order at about 62 ◦C of MC11-pol and MC11-el,
respectively. We want to emphasize that these results dif-
fer from earlier ones presented by us [20]. In fact these
earlier results refer to the room temperature tilted crys-
talline phase and not to the Sm-C phase. This unfortu-
nate error stems from a miscommunication regarding the
temperature of the measurements. For the homopolymer
MeHQ-pol and for the corresponding elastomer two har-
monics could be measured (Figs. 11 and 12). Finally Fig-
ure 13 shows three harmonics for the Sm-A peak of the
elastomer TR5-el.

All the right (double-logarithmic) figures show an at-
tempt to fit a straight line at large q-values, allowing to
test the Caillé limit predicting a decay according to (q −

qn)−2+n2η. In addition the central part of the X-ray peak
has been fitted to a Gaussian function constraint to repro-
duce the experimental FWHM ∆qz. This value can be in-
terpreted as an average finite domain size according to L =
2π/∆qz. Furthermore empirical attempts were made to fit
each full curve by a Lorentzian and by a stretched Gaus-
sian. The results of these exercises are summarized in Ta-
ble 1 in which also the smectic periodicity d = 2π/q0 and
the mosaic distribution of each of sample is given. Note
that for the elastomers (not for the polymers) ∆qz scales
approximately linearly with the harmonic number n.
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Table 1. Summary of fitting results for the elastomers and some corresponding homopolymers. The domain size is calculated
as L = 2π/∆qz.

Sample Harmonic order n d ± 0.02 FWHM ∆qz Domain size L Mosaic spread

(nm) (10−3 nm−1) (nm) (deg)

MC11-pol 1 3.50 11 550 8

MC11-pol 2 3.52 12 540

MeHQ-pol 1 4.33 22 290 9.5

MeHQ-pol 2 4.37 30 210

MC11-el 1 3.48 71 88 10

MC11-el 2 3.47 122 52

MeHQ-el 1 4.35 88 71 11

MeHQ-el 2 4.40 171 37

TR5-el 1 3.01 80 79 13

TR5-el 2 3.00 130 48

TR5-el 3 3.00 189 33

4 Discussion

The FWHM ∆qz of the quasi-Bragg peaks is in none of the
samples resolution limited and the central part can usu-
ally be well described by a Gaussian. This leads to finite
sizes along the layer normal of the order of hundreds of nm
for the polymers and tens of nm for the elastomers (see
Tab. 1). For the homopolymers ∆qz is constant for both
harmonics of MC11-pol and increases slightly for MeHQ-
pol. Possibly in the latter case some internal strain de-
veloped during the cooling to room temperature which is
absent for MC11-pol in the smectic phase at temperatures
around 60 ◦C.

Next we consider fitting the wings of the polymer peaks
in a double-logarithmic plot to straight lines. For MC11-
pol we can fit both harmonics to an exponent 2 − n2η
with η = 0.10 (Fig. 9, right). For MeHQ-pol the situa-
tion is slightly more complicated. The first and the sec-
ond harmonic lead to η = 0.05 and η2 = 0.28, respectively
(Fig. 11, right). This is in principle compatible with scal-
ing according to 2 − n2η with η = 0.06 ± 0.01. Hence in
the main-chain smectic polymers algebraic decay appears
to be maintained within the smectic domains.

Somewhat unusually for smectic systems [4,10,11] for
MC11-pol and MeHQ-pol the overall lineshape can be rea-
sonably well fitted by a Lorentzian, equation (3), with a
correlation length ξ that is of the same order for both
harmonics. The arising interpretation of a Lorentzian as
indicating short-range order can be excluded for two rea-
sons. First the correlation lengths are large, of the order of
hundreds of nm. More importantly, for short-range order
hardly higher harmonics are expected as the width ∆q of
the successive harmonics increases as n2. This leaves as
the most plausible explanation that the Lorentzian line-
shape is due to a broad exponential-like distribution of
domain sizes in the sample, see Figure 7. Such situations
have been well documented in powder diffraction (see, for
example Ref. [25]). The specific nature of the distribution

(as compared to other smectic systems) could arise from
the direct coupling between polymer defects and smectic
layer correlations that is typical for smectic main-chain
systems only. A first candidate for such defects are hair-
pins (Fig. 1c) [26–28]. However, stress-strain experiments
on nematic main-chain networks indicate that during the
formation of a monodomain sample simple hairpins are
probably removed by the mechanical strain and might play
only a minor role [29]. On the other hand, this argument
does not hold anymore for entangled hairpins as depicted
in Figure 1d. The presence of such defects would be com-
patible with a plateau in the stress-strain curve. Addition-
ally chain ends may play a role. Analogous to the situation
described for the nematic phase [30], these could also lead
to local distortion of the smectic layers (Fig. 1b). Con-
trary to side-chain smectic polymers, the polymer chains
in main-chain systems contribute to the building of the
smectic layers themselves. Due to dispersion of the poly-
mer chain length the layered structure in the direction
along layer normals cannot be terminated at any arbi-
trary place thus leading to a finite-size dispersion. Inside
the domains/grains leading to the Lorentzian average still
algebraic decaying smectic order appears to be present.

Next we come to the three elastomer samples: MC11-
el (Sm-C, Fig. 10), MeHQ-el (Sm-C, Fig. 12) and TR5-
el (Sm-A, Fig. 13). In these cases the domain sizes as
measured (tens of nm) are appreciably smaller than for
the corresponding polymers. The broadening of the smec-
tic peaks with increasing harmonic number n is very
similar as observed in smectic side-chain elastomer sys-
tems [10,11]. In the latter situation the broadening has
been attributed to strain due to the layer displacements
around the crosslinks or other types of defects generated
by the crosslinks. The linear increase in ∆qz for the elas-
tomers points to strain-induced broadening of the X-ray
peak [31–33], We recall that two effects may contribute
to broadening of the X-ray peak: the finite size of crys-
talline or smectic domains (grains) in the sample and a
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possible non-uniform strain within each domain induced
by lattice defects. The strain broadening of a diffraction
peak is proportional to the length of the scattering vector,
while the size effect does not depend on it. Thus compar-
ing the peak widths of successive harmonics both con-
tributions can be separated. These effects have been well
documented in metal physics, in particular for metals sub-
jected to cold work (see for a critical discussion Ref. [34]).
The total contribution to the Gaussian linewidth can be
written as

∆q2
exp = ∆q2

intrinsic + n2∆q2
ε + ∆q2

beam. (4)

In this formula ε refers to the strain and the contribution
∆qbeam ≃ 4 × 10−3 nm−1 from the direct beam can usu-
ally be neglected. Applying this formula to the results of
Table 1 we find for ∆qintrinsic the values given in Table 2.
The corresponding numbers of Lintrinsic = 2π/∆qintrinsic

are of the same order of magnitude as for the correspond-
ing polymers. This leads to the conclusion that the elas-
tomers differ mainly from the corresponding polymers in
the excess amount of strain due to the crosslinks.

Regarding the wings of the elastomer peaks the situ-
ation is somewhat complicated. For MC11-el the tails of
the first and second-order peak (Figs. 10b and d) do not
permit a reasonable asymptotic fit with a single value of η.
This does not allow strong conclusions because probably
practical experimental consideration are involved. First
the left tail of the second-order peak overlaps somewhat
with the right side of the first-order one. Second, due to
the relatively large mosaic we could very well be in the
transition region between 2 − n2η and 1 − n2η, in which
case the asymptotic analysis is unreliable anyhow. In con-
trast for MeHQ-el we find reasonable scaling with η = 0.17
from the first harmonic (Fig. 12b) and η = 0.20 from
the second-order peak (Fig. 12d). Finally TR5-el (Fig. 13,
right) scales nicely for the higher harmonics with 2− n2η
giving η = 0.18 ± 0.02 for n = 3 and n = 2. However, the
high-q analysis of the first harmonic (Fig. 13b) leads to a
slope < −2 that cannot be interpreted in terms of a value
for η. This probably indicates that the dynamic range of
the measurement was too small to reach the Caillé limit.
Summarizing, the asymptotic behavior as described does
not contradict the conclusion of the previous paragraphs.

The observed strain effect on the width of the quasi-
Bragg peaks in elastomers can be attributed to layer
displacements around topological defects generated in
the presence of crosslinks (edge dislocations, dislocation
loops). In fact, such dislocations have been observed in
smectic side-chain polymers by high-resolution electron
microscopy [35]. We expect that defects of higher strength
are generated in a large amount upon crosslinking smectic
polymers, which causes the large displacement of the lay-
ers, qu ≫ 1. This behavior resembles the predictions for
an elastic field of distant dislocations or other topological
defects [24]. Similar possibilities have been discussed for
various defect situations by Krivoglaz [36]. At high enough
strength and density, these defects destroy the algebraic
decay of the smectic layer correlations at large distances
and lead to a broadening of the Gaussian-like central peak.

Table 2. Results of fitting the FWHM of the elastomers from
Table 1 to equation (4).

∆qε ∆qintrinsic Domain size

(10−3 nm−1) (10−3 nm−1) Lintrinsic (nm)

MC11-el 57 42 150

MeHQ-el 85 24 260

TR5-el 60 52 120

According to Table 2 the intrinsic domain size in elas-
tomers can be as small as Lintrinsic ≃ 200 nm. The question
arises whether algebraic decay can survive over such dis-
tances. We speculate that in such small-size domains the
internal strain due to distant dislocations (or other de-
fects) is strong enough to modify the Caillé correlation
function that will be multiplied by another correlation
function describing correlations of displacements induced
by randomly distributed defects. The resulting power law
asymptotes could very well be different from that pre-
dicted by the Caillé function only, thus explaining the
rather ambiguous results from analysis of the wings of the
elastomer peaks. A close look learns that the Lorentzian
fits are much less perfect than for the polymers discussed
earlier. More seriously, even disregarding some asymme-
try, in Figure 10 for MC11-el the deviations are rather
different for the first and the second harmonic. The com-
mon tendency is that the intensity in the tails of the X-ray
peaks is higher than predicted. However, this point is not
true for the first harmonic of MeHQ-el (Fig. 12) and the
first two harmonics of TR5-el (Fig. 13). In the light of
the homopolymer results (attributed to a strong effect of
polymer defects on the smectic layer correlations) we as-
sume a complex interplay of these defects and the multiple
crosslinks.

Finally we note that in the present main-chain elas-
tomers we did not reach a disordered state as reported
for siloxane side-chain elastomers at a concentration of
crosslinks of about 20%. Though we investigated chem-
ically very different mesogenic polymers, rather similar
cyclic multifunctional crosslinks were involved restricted
to a single concentration of about 10%. As the results
do not differ much, this could indicate that the influence
of the crosslinks on the stability of the smectic elastomer
network is stronger than the properties of the smectic ma-
trix. Evidently variation of the crosllink density is needed
to make a step towards further understanding.

5 Conclusions

We have investigated the layer correlations in main-chain
smectic LC polymer and elastomer systems by X-ray anal-
ysis of the lineshape of the corresponding X-ray peak.
For the homopolymers these are well described by a
Lorentzian, which can be interpreted as an average over
domains with dimensions of hundreds of nm. The latter
sizes are probably determined by polymer defects (like
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hairpins and end points) that are for main-chain LC
polymers directly translated into layer distortions. Alge-
braically decaying order still appears to exist within these
domains. The elastomers show much broader peaks than
the corresponding polymers. This is attributed to strong
non-uniform strain in the finite-size domains that are best
described by stretched Gaussians; a Lorentzian descrip-
tion of the lineshapes only holds approximately. This com-
plex behaviour is attributed to the interplay of the poly-
mer defects and the crosslinks leading to strong strains in
the finite-size domains.
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