Supporting Information

Enhanced Properties of Polyurea Elastomeric Nanocomposites with Anisotropic Functionalized Nanofillers

Adriana M. Mihut^{$\ddagger a,b$}, Antoni Sánchez-Ferrer^{$\ddagger c$}, Jérôme J. Crassous^{a,b}, Liliane Ackermann Hirschi^a, Raffaele Mezzenga^c, and Hervé Dietsch^{a,d}

^a Adolphe Merkle Institute and Fribourg Center for Nanomaterials, University of Fribourg, Route de l'Ancienne Papeterie, P.O. BOX 209, CH-1723 Marly 1, Fribourg, Switzerland ^b Physical Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden ^c ETH Zurich, Department Health Sciences and Technology, Institute of Food, Nutrition & Health, Food & Soft

Materials Science Group, Schmelzbergstrasse 9, LFO, E23-E29, CH-8092 Zurich, Switzerland

^d BASF SE, Formulation Platform, 67056 Ludwigshafen am Rhein, Germany.

‡ These authors contributed equally to this work.

* E-mail: herve.dietsch@basf.com

Fig. SI-1: Chemical structures for the diamino-terminated poly(propylene oxide), Jeffamine D-2000, $M_{\rm n} = 2000 \text{ g·mol}^{-1}$, x ≈ 33 (Huntsmann Corporation), and the triisocynate crosslinker, Basonat HI-100 (BASF SE), $mw = 505 \text{ g} \cdot \text{mol}^{-1}$.

Fig. SI-2: DSC thermograms for the reference elastomer E0 and the three IOENs E1, E2 and E3 at the scanning rate of 10° K min⁻¹. The three arrows indicate the temperatures related to the glassy state, and the two rubbery states (physical and chemical network, and chemical network) where DMA analysis was performed.

Fig. SI-3: DMA frequency-sweep experiments from $f = 10^{-2}$ to $2 \cdot 10^{2}$ Hz for the reference elastomer E0 and the three IOENs E1, E2 and E3 at different temperatures: -70, -65, -60, -50, -40, -10, +20, +40 and +80 °C.

Fig. SI-4: Shifting of the DMA frequency-sweep experiments at different temperatures for the reference elastomer E0 and the three IOENs E1, E2 and E3.

Fig. SI-5: DMA frequency-sweep master curves for the reference elastomer E0 and the three IOENs E1, E2 and E3.

Fig. SI-6: a) Temperature dependence of the shift factor a_T for the reference elastomer E0 and the three IOENs E1, E2 and E3. The solid lines represent the fits according to the WLF equation- (see eq. 8) with a reference temperature of $T_{ref} = 293.16$ K. b) Material constants C₁ and C₂ as function of the nanoparticle concentration.

Table SI-1: Material constants C₁ and C₂ for the reference elastomer E0 and the three IOENs E1, E2 and E3 obtained from the WLF fitting with a reference temperature of $T_{ref} = 293.16$ K.

sample	c (wt%)	C ₁	C ₂ (K)
E0	0	4.74	125
E1	0.3	5.39	131
E2	0.6	6.16	137
E3	1.2	6.66	141

Fig. SI-7: a) Uniaxial stress-strain deformation curves for the reference elastomer E0 and the three IOENs E1, E2 and E3 at 20 °C. b) Zoom-in at the initial strain values.