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Photodynamics of stress in clamped nematic elastomers
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We describe the complex time dependence of the buildup of force exerted by a clamped photoelastomer
under illumination. Nonlinear (non-Beer) absorption leads to a bleaching wave of a significant cis isomer dye
concentration deeply penetrating the solid with a highly characteristic dynamics. We fit our experimental response
at one temperature to obtain material parameters. Force-time data can be matched at all other temperatures with
no fitting required; our model provides a universal description of this unusual dynamics. The description is
unambiguous since these are clamped systems where gross polymer motion is suppressed as a possible source of
anomalous dynamics. Future experiments are suggested.
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I. INTRODUCTION

Unusual properties of liquid crystal elastomers (LCEs)
arise from a coupling between the liquid crystalline ordering
of mesogenic molecules and the elasticity of the underlying
polymer network. Cross-linked networks of polymer chains
of a LCE include mesogenic units that belong to either the
polymer backbone (main-chain LCE) or side units pendent
to the backbone (side-chain LCE) [1]. The shape of a mon-
odomain nematic LCE strongly depends on the temperature-
dependent nematic order parameter Q(T ). This connection
is a consequence of the coupling of Q(T ) with the average
polymer chain anisotropy. By increasing the temperature of a
LCE, Q(T ) decreases, which leads to a decrease of the polymer
backbone anisotropy. This decrease of anisotropy manifests
itself as a uniaxial contraction of the LCE sample.

Mechanical change can be realized also through a change
of nematic order by other means. As first shown in LCEs
by Finkelmann et al. [2], changes can also be achieved by
introducing photoisomerizable groups (e.g., azobenzene) into
their chemical structure. These structures will be referred to as
nematic photoelastomers. By absorbing a photon, azobenzene
dye molecules can make transitions, with a quantum efficiency
ηt, from their linear (trans) ground state to the excited bent-
shaped (cis) state. While the rodlike trans molecules contribute
to the overall nematic order, the bent cis molecules act as
impurities that reduce the nematic order parameter and lower
the nematic-isotropic transition temperature. The illumination
of photoelastomers causes the reduction of nematic order,
which in turn produces a uniaxial contraction of the sample.
On switching off the irradiation, the nematic order parameter
recovers its initial dark state value, which results in a
macroscopic expansion of the sample.

The characteristic time of the mechanical response of the
sample is in the rather wide range of milliseconds [3,4] to
hours [2,5–8]. To see whether the slow on response in [2] was
caused by a slow polymer dynamics of the nematic elastomer
or by a slow photoisomerization kinetics, experiments were
done [5–7] on clamped photoelastomers. Contrary to the
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case of the measurements on a freely suspended sample, the
clamped setting requires no physical movement of chains in
the network. In such settings the sample is fixed at both ends of
its longest dimension (along the nematic director). Then, upon
irradiation, the sample cannot shrink and a retractive force is
exerted on the clamps (see Fig. 1 for an illustration). This force
is measured as a function of time until the photostationary state
is reached. On switching off the irradiation, the relaxation of
the force begins. It was first observed by Cviklinski et al. [6]
that the dynamics of the nematic order parameter matches
the dynamics of the mechanical response, meaning that the
rate-limiting process is dominantly the photoisomerization.
They also found that their systems display simple exponential
processes for the buildup of and decay of force.

Subsequently, it has been shown in other systems [8] that
the stress-temperature experimental data for the on process can
be approximately fitted to a simple stretched exponential form
σ n(t) = 1 − exp[−(t/τon)βon ], where σ n(t) is the normalized
stress exerted on the clamps (stress at time t divided by the
photostationary stress) and τon and βon < 1 are fit parameters.
Similarly, it was found that the normalized stress in the
off process can be fitted to the nearly exponential law
σ n(t) = exp[−(t/τoff)βoff ], where βoff ≈ 0.9. Such a complex
dynamical response cannot be attributed (as is usual) to
polymer dynamics since we have clamping. In this paper we
show that these findings can in fact be successfully described
by our simple model of photodynamics and its conversion into
stress in clamped nematic elastomers.

According to the Beer law of light absorption, the light
propagating in a thick absorbing sample is attenuated at a
constant rate. The light intensity at a depth x into the sample
is I (x) = I0e

−x/dt , where I0 is the incident intensity and dt
is the characteristic penetration depth of a given material due
to absorption by trans isomers. However, it has been shown
that the simple Beer law for light attenuation through the
sample containing dye molecules might be inaccurate due
to the so-called photobleaching effect [9–12]. This effect is
caused by depletion of trans isomers, which allows light to
penetrate to greater depths than those predicted by Beer’s
law. If dye molecules that absorbed photons do not return
to their trans state immediately, the new photons falling on the
sample cannot be absorbed in the initial layers and therefore
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FIG. 1. Schematic of a nematic elastomer with regular mesogenic
molecules (white rods) and photoactive molecules (gray). In the dark
all photoactive molecules are found in their linear trans state (left
panel). Upon illumination some photoactive molecules undergo a
transition to the bent cis state (right panel), which would lead to
contraction if the elastomer were freely suspended. Such contraction
is prevented by the clamps, resulting in a force f on the clamps.

propagate through the sample following a nonlinear absorption
law.

Using the model described in Sec. II, we calculate the stress
exerted on the clamps during and after light irradiation. Then
we relate the stress to the light absorbance A = − ln(I/I0) at
the back of the sample. We apply the full nonlinear absorption
model, which takes into account the forward trans to cis
and back cis to trans photoisomerization as well as thermal
isomerization of cis molecules back to the trans state [11].
The major puzzle in photoactuation is thereby addressed.
Beer penetration depths are typically in the 1–10 μm range
for normal dye loadings and hence orders of magnitude less
than the sample thickness. If a small volume fraction of
solid is photocontracted, one expects the overall mechanical
response to be small in the Beer limit. We show that the stress
is proportional to the cis concentration and thus bleaching
allows an appreciable sample volume to contribute to the
force as a wave of trans to cis conversion deeply penetrates.
To test the validity of our model we fit the on process
σ n(t) data of Ref. [8] at one temperature in order to fix the
material constants determining the photoprocesses. The σ n(t)
response at other temperatures then does not need fitting:
The same material constants suffice, after they are shifted by
the separately measured changes in thermal relaxation times
with temperature change, to reproduce the stress response.
This remarkable universal agreement between theory and
experiment confirms the hypothesis of the domination of
photoisomerization over polymer dynamics. We hence explain
the observed stretched exponential (βon < 1) processes in
terms of nonlinear spatiotemporal photodynamics rather than
the usual (unknown) polymer relaxation processes normally
assumed to be behind such complex dynamics. Our analysis
reveals that it is important to consider back cis to trans
photoconversion.

II. MODEL

In this section we consider a simple model of stress
dynamics of clamped nematic photoelastomers. The resulting
stress is calculated within a nematic rubber model in Sec. II A,
while the process of nonlinear light absorption is outlined in
Sec. II B.

A. Stress exerted on the clamps

Long polymer chains have a Gaussian distribution, be-
coming anisotropic if they contain mesogenic molecules. The
elastic free energy density of a nematic rubber in response to
a deformation gradient tensor � can be expressed as [1]

F = 1

2
μTr(�

0
· �T · �−1 · �) + 1

2
μ ln

(
Det(l)

Det(l
0
)

)
, (1)

where μ = nskBT is the shear modulus in the isotropic state (ns

is the number of network strands per unit volume). The tensors
� and �

0
generalize the Flory step length, whence directions

parallel and perpendicular to the nematic director n have
values �‖ and �⊥. The matrix � describes the current Gaussian
distribution after deformation �, while �

0
gives the initial

step lengths. As rubber changes shape at constant volume
Det(�) = 1. Taking n along the z axis, � assumes the diagonal
form � = Diag(�⊥,�⊥,�‖). We adopt a simple freely jointed
rod model for the polymer backbones, with a step length a in
the isotropic state. The elements of � are �‖ = a(1 + 2Q) and
�⊥ = a(1 − Q), with Q being the nematic order parameter.
Although crude, this model quite accurately describes a wide
range of main-chain and side-chain LCEs [1,13]. We will
describe side-chain LCE experiments where we envisage the
order Q that polarizes the shape of backbone chains as coming
from the resultant nematic order of all of the rods: photoinert,
trans, and cis. We are only concerned with derivatives of F

with respect to � and we shall suppress �-independent terms
in Eq. (1).

Consider an elastomer in an initial nematic state at tem-
perature T , with �

0
= Diag(�0

⊥,�0
⊥,�0

‖). Illumination changes

�
0

to �
p

= Diag(�p
⊥,�

p
⊥,�

p
‖). A free sample suffers uniaxial

spontaneous photodeformation λ
p

= Diag(1/
√

λp,1/
√

λp,λp)

directed along n = z, with its principal contraction λp < 1
and perpendicular elongation 1/

√
λp due to incompressibility

Det(λ
p
) = 1. The free-energy density (1) corresponding to

� = λ
p

is

F = 1

2
μ

(
2

λp

�0
⊥

�
p
⊥

+ λ2
p

�0
‖

�
p
‖

)
. (2)

Minimization over λp gives the spontaneous photocontraction
λps = (�p

‖�
0
⊥/�

p
⊥�0

‖)1/3. Clearly, λps < 1 since �
p
‖/�

p
⊥ < �0

‖/�
0
⊥,

that is, the sample becomes less anisotropic on illumination.
Clamping (see Fig. 1) in effect stretches the sample

by λ = 1/λps along n to restore the sample to the length
before illumination. It is known [13] that strain little per-
turbs the underlying nematic order. We assume that �

p
is unchanged after this stretching. Taking � = λ · λ

ps
=

Diag(1/
√

λλps,1/
√

λλps,λλps) in (1) and the above value for
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λps, one gets

F = 1

2
μ

(
Det(�

0
)

Det(�
p
)

)1/3 (
λ2 + 2

λ

)
. (3)

The result is the same as that of a classical elastomer with
a renormalized shear modulus μ. If the formation state were
isotropic followed by cooling to a nematic before illumination,
F is as in (3) with a different non-light-dependent prefactor [1].

We denote the area of the sample in the nematic state before
illumination by A0 and its length along the director by L0.
Incompressibility gives A0L0 = ApsLps, where Aps and Lps

are the area and the length of a free sample after illumination.
The force exerted by a photoelastomer due to the stretching λ

is

f = A0L0
∂F

∂(λLps)
= Aps

∂F

∂λ
, (4)

where Aps = A0/λps. After differentiation, we take λ = 1/λps

since there is clamping. The stress σ = f/A0 exerted on the
clamps takes the form

σ = μ

(
Det(�

0
)

Det(�
p
)

)1/3 (
1

λ2
ps

− λps

)
. (5)

As the shape of the sample is not changing upon the
illumination, true and engineering stresses are the same.

The step lengths before illumination are �0
‖ = a[1 +

2Q(T )] and �0
⊥ = a[1 − Q(T )]. Upon illumination, the cis

isomers act as impurities that lower the nematic-isotropic
transition temperature, which can also be seen as a light-
dependent increase of the temperature T [2]. The elements of
�

p
are �

p
‖ = a[1 + 2Q(Teff)] and �

p
⊥ = a[1 − Q(Teff)], where

Teff is a fictitious effective temperature that is the actual
temperature T increased by a light-dependent term 
T ,
whence Teff = T + 
T . We estimate order change under
illumination by taking shift along the Q(T ) relation of the
dark state. We can examine the effect of cis impurities on
the free energy. The nematic mean field potential is U (θ ) =
−JQP2[cos(θ )], where θ is the angle a rodlike mesogen makes
with the nematic director, J is the nematic mean field coupling
constant, and P2 is the second-order Legendre polynomial. The
coupling constant J depends on the concentration ρ of linear
rods as ρν . The scaling of J ∼ ρν has been argued to have
ν = 1 [14,15]. It turns out, however, that our final results will
not depend on the specific value of ν. We assume for simplicity
that bent cis isomers have no nematic order; they weaken
the effective potential experienced by the linear rods. One
can show that the temperature-dependent part of Landau–de
Gennes expansion of the Maier-Saupe [16] free energy has
the form FL = 1

2A0(T − T ∗)Q2 + · · ·, where T ∗ = J/5kB is
the transition temperature; here we have neglected a small
contribution to T ∗ arising from the rubber elastic free energy.
Upon illumination, one can view the change of ρ, and thus
change of J and T ∗, as an effective change in T at constant
T ∗.

Our nematic photoelastomers contain regular mesogenic
molecules and azo dyes that contribute to the nematic order
when in the trans state. Let ρ0 denote the total concentration
of all mesogenic molecules in the dark state (no cis molecules

present) and δ the molar fraction of azo dyes. Upon illumina-
tion, the total concentration of linear molecules after time t is
ρ(t) = ρh + ρt(t), where ρh = ρ0(1 − δ) is the concentration
of regular mesogenic molecules (constant in time) and ρt is
that of azo dyes in the trans state at time t [ρt(t = 0) = ρ0δ].
Dye molecules in trans and cis states contribute to the total
dye molecules concentration: ρ0δ = ρt(t) + ρc(t), where ρc(t)
is the concentration of cis molecules at time t . Expressed
in terms of trans nt = ρt/ρ0δ and cisnc = ρc/ρ0δ number
fractions, the previous relation becomes nt(t) + nc(t) = 1.
For the total concentration of linear molecules ρ(t), one
can write ρ(t) = ρ0[1 − δ + nt(t)δ] = ρ0[1 − nc(t)δ]. Now
the coupling constant J becomes J (t) = J0[1 − nc(t)δ]ν ≈
J0[1 − νnc(t)δ] for nc(t)δ � 1. Thus cis impurities decrease
T ∗ by 
T = νT ∗ncδ, which is equivalent to increasing the
real temperature to Teff = T + 
T = T + νT ∗ncδ.

The actual order parameter (upon illumination) at temper-
ature T is then the dark state order parameter Q(T ) shifted
to Q(Teff) = Q(T + 
T ) = Q(T + νT ∗ncδ). If T is not too
close to the transition temperature Tni, the last expression
can be approximated by [6] Q(Teff) ≈ Q(T ) + bnc, where we
have introduced b ≡ ν(dQ/dT )T ∗δ < 0, since (dQ/dT ) <

0. Linearization leads to a simple stress off dynamics σ n(t) =
e−t/τ (to be discussed in Sec. II B), which is compatible
with experimental findings. The exact expression for Q(Teff)
(without linearization) would convert the simple exponential
time decay of nc to a nonexponential time response of σ n.
Such nonlinearity is more pronounced near the transition
and has been seen in optical response [15]. On substituting
λps in Eq. (5) and writing the elements of step length
tensors �

0
and �

p
in terms of the order parameters Q(T ) and

Q(Teff) = Q(T ) + bnc, one gets a cumbersome expression for
σ . Keeping only linear terms in bnc, consistently with linear
decay processes, one obtains

σ = −3bμ
nc

[1 − Q(T )][1 + 2Q(T )]
. (6)

The stress σ is of course positive since b is negative. The cis
number fraction is time and depth dependent nc = nc(x,t),
which leads to a (x,t) dependence of the stress. To calculate
the average stress σ (t), which is a measure of the force,
exerted on the clamps one must integrate over depth σ (t) =∫ d

0 σ (x,t)dx/d, where d is the sample thickness. To do this,
we have to explore the behavior of the cis number fraction
nc(x,t).

B. Light absorption

The light intensity I varies with depth x (see Fig. 1) due to
absorption by trans and cis species of dye molecules

∂I

∂x
= −γ�tI (x,t)nt(x,t) − γ�cI (x,t)nc(x,t), (7)

where γ = h̄ωρ0δ subsumes the energy h̄ω of each absorption
of a photon from the beam and the absolute number density
of chromophores ρ0δ. Here �t and �c are rate coefficients
for photon absorption. We assume � to be independent
of nematic order. Such feedback would be an additional
source of nonlinearity that has been discussed elsewhere [14].
Further, the experiments we shall describe were performed
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using unpolarized light, which one can show reduces the
sensitivity of � to changes in nematic order. We shall find
excellent agreement with experiment using this independence
assumption.

To simplify the above relation, we normalize I (x,t) by the
incident intensity I0 to obtain I = I/I0. The combinations
γ�t and γ�c will be written as 1/dt and 1/dc, respectively.
Now Eq. (7) becomes

∂I
∂x

= −nt(x,t)

dt
I(x,t) − nc(x,t)

dc
I(x,t). (8)

Assuming that the trans population of absorbers does not
change appreciably nt(x,t) 	 1, one obtains Beer attenuation
I = e−x/dt . To close Eq. (8) one needs the rate equation for
the trans population at (x,t),

∂nt

∂t
= −ηt�tI (x,t)nt(x,t) +

(
ηc�cI (x,t) + 1

τ

)
nc(x,t).

(9)

The changes in nt are due to photoconversions (with quantum
efficiencies ηt per photon absorption of trans to cis transition
and ηc per photon absorption of cis to trans transition) and
thermal back reaction from the cis population at a rate 1/τ ,
with τ being the cis lifetime. Equation (9) can be rewritten as

τ
∂nt

∂t
= [1 + βI(x,t)] − [1 + (α + β)I(x,t)]nt(x,t), (10)

where the combinations α = ηt�tI0τ and β = ηc�cI0τ mea-
sure how intense the incident beam is compared with the mate-
rial constants It ≡ 1/ηt�tτ and Ic ≡ 1/ηc�cτ . The parameter
α is the ratio between the forward trans to cis conversion rate
ηt�tI0 and the thermal back rate 1/τ ; the parameter β has
a similar interpretation. Note that both α and β depend on
temperature T since the cis to trans thermal decay is activated,
τ = τ (T ), and τ is measurable directly or in stress decay.

After integration of Eq. (8) over depth x we get∫ d

0
nc(x,t)dx = d − dtA(d,t)

1 − dt/dc
, (11)

where the absorption is determined by the relation A(x,t) =
− ln I(x,t). From the above equation one easily obtains the
average stress

σ (t) = − 3bμ

(1 − Q)(1 + 2Q)

1 − (dt/d)A(d,t)

1 − dt/dc
. (12)

In experiments one usually measures the normalized stress
σ n(t) = σ (t)/σ s, where σ s is the stationary state stress

σ n(t) = 1 − (dt/d)A(d,t)

1 − (dt/d)A(d)
. (13)

Here we adopt the convention that A(d) denotes the steady
state value of the absorption A(d,t). The same convention will
be used for I, nt, and nc.

For off dynamics, after setting I = 0 in Eq. (9), one
gets a simple equation for the cis number fraction nc(x,t) =
nc(x,0)e−t/τ , where nc(x,0) represents the spatial profile of
nc at the instant the light is switched off t = 0. On inserting
nc(x,t) into Eq. (6), averaging over depth, and normalizing
the average stress with its value at t = 0, one gets a simple
expression σ n(t) = e−t/τ .

Given that the stress σ n(t) for on dynamics depends on both
A(d,t) and A(d), we shall first discuss the behavior of these
quantities. In the steady state ∂nt/∂t = 0 we have

nt(x) = 1 + βI(x)

1 + (α + β)I(x)
, nc(x) = αI(x)

1 + (α + β)I(x)
.

(14)

Now the equilibrium solution of Eq. (8) can be expressed in
the form

ln(I) +
(

α − ηβ

β(1 + η)

)
ln

(
1 + β(1 + η)I
1 + β(1 + η)

)
= − x

dt
, (15)

where η = ηt/ηc is the ratio of the quantum efficiencies.
The above expression for I(x) provides a generalization of
the usual Beer law. Deviations from Beer’s law come about
because at high intensities the cis population increases and is
generally less absorbing than the trans species. In the limit
�c → 0, the parameter β → 0 so that Eq. (15) reduces to

ln(I) + α(I − 1) = − x

dt
. (16)

For α = 0, one finds the standard Beer law I = e−x/dt , while
for large α the law acquires the linear form

I(x) 	 1 − x

αdt
, (17)

at least over depths up to x ∼ αdt whereupon I is small and the
ln(I) again prevails to give a finally exponential penetration.
The variation of light intensity with reduced depth for large
α is represented in Fig. 2 by the solid line t/τ = ∞ in the
case of the absence of back photoconversion (β = 0) and by
the dash-dotted line t/τ = ∞ when β �= 0. Note that even
a moderate value of β (see Fig. 2) has a major impact on
the variation of I with depth. Non-Beer absorption was first
explored for dyes in nematic liquid crystals by Statman and

FIG. 2. Light intensity versus the reduced depth x/dt for various
reduced times t/τ . The dash-dotted lines represent the case with the
presence of back photoconversion (α = 36, β = 1, and η = 3 in this
example), while the solid lines correspond to the absence of back
photoconversion (α = 36 and β = 0); note that even a small value of
β (compared to α) significantly affects the variation of I with depth.
In the limit of large t/τ one achieves the stationary regime described
by Eq. (15).

062503-4



PHOTODYNAMICS OF STRESS IN CLAMPED NEMATIC . . . PHYSICAL REVIEW E 87, 062503 (2013)

Janossy [9] and by Corbett et al. [10–12] and experimentally
by Serra and Terentjev [17].

Beer absorption has no dynamics since it holds only if
the number fraction nt is unchanging nt = 1. To explore the
dynamics of non-Beer absorption, we have to solve the coupled
equations (8) and (10). Indeed, using these two equations one
gets [12]

τ
∂A
∂t

= −A + x

dt
+ (α + β)(I − 1) +

(
α

dc
+ β

dt

) ∫ x

0
I dx.

(18)
Clearly, the absorption A can be expressed in terms of reduced
variables x̃ = x/dt and t̃ = t/τ . Taking derivative of the above
equation with respect to x̃ and using I = e−A, we get a partial
differential equation in A(x̃,t̃),

∂2A
∂t̃∂x̃

= 1 − ∂A
∂x̃

[1 + (α + β)e−A] + β(1 + η)e−A. (19)

We analyze this equation numerically using the boundary
condition A(0,t̃) = 0 and the initial condition A(x̃,0) = x̃.
The results are presented in Fig. 2. As expected, the light
intensity decreases with reduced depth more rapidly in the
presence of back photoconversion (β �= 0, dash-dotted lines)
than in the absence of back photoconversion (β = 0, solid
lines). Note that in both cases the stationary regime is reached
for moderate values of the reduced time t/τ .

Before proceeding with the analysis of the behavior of the
stress, it is tempting to consider briefly the time evolution of
the cis number fraction nc = nc(x̃,t̃). Thus, by taking I from
Eq. (10) and substituting it into Eq. (8), one gets

(ṅc + nc)

[
1 − nc

(
1 + β

α

)] [
1 − nc

(
1 − ηβ

α

)]

= [ṅ′
c(nc − 1) − n′

c(1 + ṅc)] + β

α
(ṅ′

cnc − ṅcn
′
c), (20)

where for simplicity we used the notation ṅc = ∂nc/∂t̃ and
n′

c = ∂nc/∂x̃. In the numerical integration of this equation we
use the boundary condition

nc(0,t̃) = α

1 + α + β
{1 − exp[−t̃(1 + α + β)]} (21)

and the initial condition nc(x̃,0) = 0. The quoted boundary
condition is obtained by integration of Eq. (10) for x = 0.
Figure 3 shows nc as a function of the reduced depth x/dt for
various reduced times t/τ . It seems that the stationary solution,
given by the second equation of (14), is reached already for
moderate values of the reduced time t/τ .

We estimate the thickness xc/dt of the cis layer at t/τ by
calculating positions of points of the curves from Fig. 3 where
second derivatives of nc over x/dt change the sign. In the
stationary case, this condition can be expressed analytically
by taking the second derivative of the second equation of (14)
with respect to x/dt and using (8),

(α + β)β(1 + η)I2
c + 2(α − ηβ)Ic − 1 = 0, (22)

where Ic = I(xc/dt). Inserting the positive solution of this
equation into Eq. (15), we obtain an equation for the stationary
value xc/dt. In the nonstationary case we proceed numerically.
Results for α = 36 and β = 0 and for α = 36 and β = 1 are
presented in Fig. 4. In both cases xc/dt increases approximately

FIG. 3. The cis number fraction nc against the reduced depth
x/dt for various reduced times t/τ . The dash-dotted lines represent
the case α = 36, β = 1, and η = 3, while the solid lines represent the
case α = 36 and β = 0. In the large time limit one approaches the
solution presented by the second equation of (14).

logarithmically with time in the interval from about 0.5τ to
1.5τ ; this can be easily seen if one presents curves from
Fig. 4 on a logarithmic scale. The stationary solution is
reached in about t = 4τ for β = 1 and t = 5τ for β = 0.
It is also interesting to compare the time needed to reach the
stationary state with finite β with the time needed to convert
an equally thick layer without cis absorption. In Fig. 4 this
ratio is about 10, so even though the cis absorption is small,
it strongly affects the photodynamics of the system. The back
photoconversion has also been found to be important in the
analysis of experimental findings [18].

III. RESULTS

As we have seen, the absorption A at the back of the sample
x = d in Eq. (13) for stress is actually a function of reduced

FIG. 4. Approximate thickness xc/dt of the cis layer against the
reduced time t/τ for α = 36 and β = 0 (solid line) and α = 36, β =
1, and η = 3 (dash-dotted line). Both curves reach their stationary
values after a moderate time (measured in units of τ ), which coincide
with corresponding values (thin solid lines) obtained from Eq. (22)
as explained in the main text.
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variables A(d̃,t̃). Then one can generate σ n(t) for different
values of the parameters α, β, d̃, and τ . Experimental data
for σ n(t) were fitted [8] to the simple empirical form σ n(t) =
1 − exp[−(t/τon)βon ], with βon < 1. This stretched exponential
form must fail at short times and fitting at long times is difficult.
We have fitted our theoretical σ n(t) to the above form. In the
absence of cis to trans photoconversion (β = 0) we can get fits
for βon > 1 only. If we allow, however, back photoconversion,
we can obtain agreement with the stretched exponential form
βon < 1. It is therefore very important to take into account back
photoconversion to successfully fit the experimental data.

We consider the experimental data for the compound
SCEAzo2-c-10 in Fig. 5(a) of Ref. [8]. There are several
quantities entering our relation (13) for stress: the ratio of the
quantum efficiencies η, the characteristic thermal relaxation
time τ , the thickness of the sample d̃ = d/dt in units of
the characteristic length, and the dimensionless parameters
α and β. For the ratio of the quantum efficiencies we
adopt the estimate η ≈ 3 of Ref. [19]; some larger values
of η (up to η ≈ 4) have also been reported. Our analysis
shows, however, that the quality of the fit is not very
much affected by the particular value of η in the range
η ≈ 3–4. For the thermal relaxation times τ (T ) we take
the experimental values found in the stress off dynamics
[8] τ = 51.5, 33, 23, 15, 10.4, and 7.2 min for temper-
atures T = 45 ◦C, 50 ◦C, 55 ◦C, 60 ◦C, 65 ◦C, and 70 ◦C, re-
spectively. With this choice the number of required fit
parameters is reduced to three: d̃, α, and β.

We first fit the experimental data for σ n(t) at T0 = 45 ◦C
to our expression (13), using d̃, α and β as fit parameters
(see Fig. 5). The optimal values of fit parameters were found
to be α = 54.9, β = 1.7, and d̃ = 20. Given that the sample
thickness [8] was d = 300 μm, the corresponding Beer length
is dt = 15 μm, which is not far from an independent estimate

( )

FIG. 5. Normalized stress as a function of time. Theoretical
predictions are represented by solid lines, while experimental data,
taken from [8], are represented by different symbols corresponding
to different temperatures. For better visibility the five curves corre-
sponding to temperatures T > 45 ◦C are shifted along the σ n axis
by the values 0.05, 0.1, 0.15, 0.2, and 0.25, respectively. Only the
T0 = 45 ◦C curve is fitted, while all other curves are theoretical.

dt ≈ 10 μm obtained from the azobenzene absorption spectra.
This rough estimate of dt can be obtained by assuming that
the molar extinction for SCEAzo2-c-10 at its absorption
maximum coincides with the corresponding known value
for the azobenzene in benzene [20]. Let us note, however,
that quite good fits can be also obtained for some other
values of fit parameters. This ambiguity can be settled
obviously by a further reduction of the number of the fit
parameters, for example, by measuring d̃ . Anyway, in our
case the situation is not so serious because the parameter
d̃ is temperature independent, while parameters α and β

depend on temperature T only through thermal relaxation time
α(T ) = ηt�tI0τ (T ) and β(T ) = ηc�cI0τ (T ). For example, at
other temperatures T , one can write α(T ) = α(T0)τ (T )/τ (T0)
and β(T ) = β(T0)τ (T )/τ (T0). Thus taking the experimental
values of thermal relaxation times τ (T ) for temperatures
quoted in Fig. 5, we determine the corresponding values of
α(T ) and β(T ). Then using these values and expression (13)
for the normalized stress, we simply plot corresponding curves
for temperatures T > T0 without any fitting. Note the excellent
agreement of these theoretical predictions with experimental
data. Extracting α and β by fitting at one T0 gives universal
fit-free agreement at other temperatures.

IV. CONCLUSION

We have demonstrated that both significant force magnitude
and complex force dynamics result from nonlinear optical
absorption. A bleaching wave of increased cis concentration,
and hence a contribution to retractile force, penetrates a
sample with a highly characteristic dynamics in which the
(small) absorption of the cis moiety is essential. Fitting σ n(t)
at one temperature yields the relevant material parameters
of the dye responsible for the optomechanical response.
The σ n(t) response at other temperatures is then obtained
with no further fit by simply scaling these parameters by
the separately measured decay rates at the other tempera-
tures. This astonishing predictive power indicates the validity
of the nonlinear temporal-spatial optical absorption model
used.

Future experiments should separately measure Beer pene-
tration depths in the weak absorption limit and the nonlinear
material parameters. In that event there should be no fit
parameters at all, as in this current work away from the
reference temperature. With the material parameters thus
measured, one could employ the theory to examine more
complex systems such as nonclamped elastomers and sys-
tems where the response is more complex due to director
patterning.

ACKNOWLEDGMENTS

M.K. acknowledges support from the Winton Programme
for the Physics of Sustainability and the Cambridge Overseas
Trust and M.W. thanks the Engineering and Physical Sciences
Research Council (United Kingdom) for a Senior Fellowship.
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