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Supplementary video legends

Supplementary Video 1 – Toroidal fiber motors
A nylon-6 ring (fiber diameter 0.8 mm) rotating at plate temperature 180◦C; video sped up 2-fold. A
PVDF ring (fiber diameter 0.5 mm) rotating; video sped up 2-fold. A PDMS ring (fiber diameter
0.7 mm) rotating; video in real time.

Supplementary Video 2 – Spiral fiber motor
Spiral fiber motor operation: A 0.8 mm nylon-6 fiber wound as a spiral with 10 turns (outer
diameter 14 cm) and held together with an aluminum holder, operated at 160◦C. Marks on the fiber
and the rotation of a fiber kink at one end indicate the rotation of the motor. Rubber tracers (red)
placed on the fiber are transported by fiber rotation. Video is sped up 2-fold.
Eiffel Tower lifting: A 0.8 mm nylon-6 fiber wound as a spiral with 9.5 turns, operated at 180◦C
lifts a 20 g payload (a small brass copy of the Eiffel Tower). Video is sped up 5-fold.

Supplementary Video 3: Self-propulsion of fibers
Spaghetti: Uncooked dry spaghetti at 110◦C. After the initial ‘warm up’, the sample runs also on a
cold substrate, but in the opposite direction with respect to the curvature, until the substrate’s and
the fiber’s temperatures have equilibrated. Video in real time.
Silicone brush bristle: A 1.5 mm mean diameter silicone rubber rod (slightly conical, cut from a
baking brush), spinning on a 260◦C hot plate. Sped-up 2-fold.
PDMS rubber fiber: diameter 0.7 mm, temperature 180◦C. Sped-up 2-fold.
Nylon fibers: one nylon-6 fiber (diameter 0.6 mm) at 110◦C, sped up 2-fold (cf. Video 4). Several
nylon-6 fibers (diameter 0.5 mm) bouncing between two glass slides and mutually interacting; sped
up 20-fold.

Supplementary Video 4 – Annealing nylon-6 motors
Two nylon-6 fibers (diameter 0.6 mm), one annealed at low temperature (110◦C) and one at high
temperature (180◦C). Videos sped up 2-fold.

Supplementary Video 5 – Fiber animation
Dynamical evolution of an initially straight fiber on a hot plate. Temperature distribution in color
code. The curvature is exaggerated for visualization purposes.

Supplementary Video 6 – Ring self-healing
A nylon-6 ring (fiber diameter 0.6 mm) of radius 3.2 cm rotating at plate temperature 195◦C. A
curvature defect appears and gradually self-heals. Video sped up 2-fold.

Supplementary Video 7 – Thin filament loop
A 120 µm diameter nylon-6 fiber loop (only one half of the loop is visible) spins at a mean frequency
of 15 Hz. Video acquired at 320 fps and played at 30 fps.
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Supplementary methods

Fiber motor preparation and testing

Rings: annealing and dynamic self-healing. Commercially available fishing line nylon-6 fibers
(”Caperlan 4× 4”, supplier Decathlon, France) with diameters 600 or 800 µm were closed to rings of
radii 2 to 6 cm via a small brass tube. The rings were gently annealed by raising the temperature
beyond the onset of rolling over a course of few minutes, to relieve mechanical prestresses entrapped
during the fabrication (extrusion) process. While linear open fibers are quite delicate to anneal (see
below), closed rings displayed a robust and easy annealing process, probably due to their self-stabilizing
shape. Compared to straight fibers, rings could be more easily directly exposed to larger temperatures
than their onset temperature and they could be run robustly at slightly higher temperatures.
Interestingly, at elevated temperatures of 190-195◦C rings could occasionally be seen to form localized
strongly curved kink-like defects that however quickly reverted back to uniform curvature during a
continuous operation (i.e. turning) of the ring, cf. Supplementary Fig. 1 and Supplementary Video 6.
Very rarely at 190-195◦C rings suffered an irreversible damage that led to a blocking of their rotation
without any visible kink or obvious defect. Nevertheless, the majority of the rings stayed functional
and rotating for days.

Spirals: annealing and long time testing of the spiral motor. Compared to the ring motors,
spiral fiber motors (made from nylon-6) that were held in shape by a aluminum holder had to be
annealed more carefully and slowly due to frictional interactions with the holder. The holder-fiber
interactions lead to an occasional undesired pinning of the thermally shortening fiber onto the holder.
The latter process could be prevented by a slower first annealing cycle (gentle raising temperature in
10-15 minutes from 100-160◦C) and occasional gentle stirring of the fiber (with a silicone brush) along
its tangents to relieve built-up strains and to unpin from the holder.
A long time testing, cf. Supplementary Fig. 2, of annealed spiral motors reveals a continuous operation
of the device with a gradual decay of turning speed on a timescale of tens of hours. Data have been
obtained from a nylon-6 spiral (600µm diameter, 3.2m total length) running at an operating tempera-
ture of T = 160◦C; the spiral was observed to operate continuously for 24 hours loosing approximately
half of its initial angular velocity in this time period.

Linear fiber motors.
Nylon-6 fibers with diameters ranging from 800 down to 120 µm were gently annealed by slowly
heating the fiber on the heating plate from their onset temperature of rolling (for 600− 800µm fibers
100-110◦C) up to their optimal running temperatures 180-185◦C. In a typical annealing procedure,
the temperatures were gently raised over a course of several minutes so that the fiber gradually
liberates defects and prestresses via the process of combined heating and their spontaneous rolling,
cf. Supplementary Fig. 3. All fibers that were subjected to even a single training run could in the
following runs be directly exposed to the highest operation temperatures without damage and were
immediately engaging in the rolling process (see also Fig. 5B in the main manuscript). This memory
effect of the first training run could be observed within a long period of up to several days after the
training.
Skipping the first gradual training run and instead directly exposing the fibers to temperatures higher
than their onset temperature (of 140◦C-180◦C) resulted in a rapid reshaping of the fiber and catas-
trophic deformations, see Supplementary Fig. 4, despite the fact that the process happens far below
the melting temperature (Tmelt = 215◦C). This uncontrolled exposure process led in most cases to
very poorly mobile or completely immobile fibers. The final torturously deformed irregular fiber shape
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was irreversible and could not be reverted even up to the point of fiber melting. These tests underline
the importance of a first gentle training run for reproducible rotation of linear, open fibers.
The annealing of thinner nylon-6 fibers, below 0.2 mm in radius, becomes increasingly delicate and
structural defects (like bends, kinks and twisted helical sections) appear more often. Consequently, a
reproducible annealing process of thinner samples requires a slower annealing procedure in comparison
to thicker fibers. For consistency reasons, all nylon-6 fibers used for angular velocity measurements
were annealed according to the same minimal protocol: Starting from 100◦C the temperature is raised
to 160◦C at a heating rate of 15 K/min followed by a gentler increase from 160◦C to the highest
temperature of 185◦C at 7 K/min. Following this protocol leads to close to 100% functional fiber
motor samples for all probed thicknesses.

For the PVDF fiber samples (”Phen-X-Fluorocarbone” fishing line fibers, supplier Decathlon,
France; diameter 0.5 mm) the annealing is more delicate than for nylon-6. A modified annealing
protocol respecting the lower PVDF melting temperature (Tm = 177◦C) was followed, with a tem-
perature raise from 130◦C up to 170◦C at a slower heating rate of 1K/min. After annealing PVDF
fibers move with comparable velocities as their nylon-6 counterparts, see Supplementary Fig. 5 in
comparison to Fig. 5B in the main manuscript.

The PDMS fiber samples were prepared in house in the way described in the materials section and
did not need any annealing.

In addition to quantitiative studies on nylon-6 and PVDF fishing lines, we also made qualitative tests
using starch (commerical, dry spaghetti) and silicone fibers (bristles cut from a commercial cooking
brush). Both – amorphous – fibers also displayed the rolling motion, cf. Supplementary Fig. 6. In
addition, Supplementary Fig. 6C exemplifies a collective motion of several nylon fibers confined be-
tween two glass cover slips.

Effect of fiber length on stability: The length of the linear fiber plays a certain role in their ability
to roll smoothly and reproducibly. Occasionally, especially at temperatures only slightly above the
onset of rolling motion, short PVDF and nylon-6 fibers (i.e. less than 5 cm in length) became stuck
in a metastable out-of-plane deformed position. They stayed suspended above the plate by only two
contact points (their two ends) for several seconds, leading to intermittent motion and more frequent
direction reversal. To avoid this behavior only longer fiber samples (> 8 cm) running sufficiently
smoothly were used for quantitative measurements.

Linear and angular velocities

Linear velocities were measured by tracing the fibers’ positions from time-lapse and high speed record-
ings. The angular velocities were extracted by tracing color marks painted on fibers from high speed
recordings of the rolling process on a Phantom MIRO LC 320S camera.
The comparison of the linear and angular velocities of single fibers with a given radius R revealed
measurable differences between the expected angular velocities ωe = v/R and the directly measured
ωm with ωm being consistently smaller than ωe. This effect is especially pronounced for very thin
fibers with the ratio ωe/ωm approaching 2 for the thinnest samples. The discrepancy is resolved by
carefully observing the dynamical shape evolution of the fibers. During the rolling process, the fibers
seem to slightly but visibly fluctuate in shape in a periodic manner. This observation together with
ωe/ωm different from unity implies that the fiber shape is slightly deviating from ideal and displays
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small amplitude, large wavelength bends. When rotating the bend defects give rise to an increase of
the effective fiber diameter beyond the nominal fiber thickness. The ratio between the nominal and
effective radius of fibers of different thickness is depicted in Supplementary Fig. 7.

Mechanical characterization of nylon fibers

Dynamic mechanical thermal analysis (DMTA) tests were carried out with an Instron E3000 dynamic
tensile machine. Cylindrical filament samples of nylon-6 of 0.8 mm diameter were clamped into the
sample holder. The temperature was varied from 30 to 190◦C in steps of 20◦C. During the DMTA
tests, twenty-seven logarithmically spaced sinusoidal waves were employed at frequencies between 0.1
and 8.93 Hz. A strain control was used during tests with minimum and maximum strain levels of
3 · 10−3 and 5 · 10−3, respectively.
Supplementary Fig. 8 shows the storage modulus, E′, and the loss modulus, E′′, for the used nylon-
6 as a function of frequency for different temperatures. In the relevant temperature range for the
elasto-rotation experiments (130-190◦C), both moduli are almost frequency-independent, implying a
constant loss tangent.

Structural characterization of nylon fibers

In order to analyze the structural features of the fibers, their crystallinity and anisotropy, wide-angle
X-ray scattering (WAXS) experiments were performed using a Rigaku S-MAX3000 equipped with a
Rigaku MicroMax-007HF copper rotating anode generator (12 kW, 40 kV, 300 mA) with radiation
of wavelength λCuKα = 0.15418 nm. The scattering intensities were collected by a Fujifilm BAS-MS
2025 imaging plate system (20 cm × 25 cm, 50 µm resolution) and a 2D Triton-200 X-ray gas-filled
multi-wire detector (120 mm diameter, 100 µm resolution). An effective scattering vector range of 0.1
nm−1 < q < 25 nm−1 was obtained, where q is the scattering wave vector defined as q = 4π sin θ/λCuKα

with a scattering angle of 2θ. Samples were placed in a self-constructed holder controlled by a Haake-
F3 thermostat.
The 2D WAXS intensity profile of the annealed nylon-6 fiber shows the semicrystalline and anisotropic
pattern of the sample at 120 and 185◦C (Supplementary Fig. 9a and b, respectively), while isotropic
and amorphous at 240◦C due to the melting of the sample as visualized by the isotropic halo in
Supplementary Fig. 9c. At 120◦C, the sample presents two equatorial (red section), two meridional
(green section), and one reflection at 45 degrees (blue section). The same sample at 185◦C only shows
one equatorial reflection (red section), two meridional (green section), and one reflection at 45 degrees
(blue section). At temperatures above 220◦C, nylon-6 melts and scatters isotropically.
Nylon-6 is a semicrystalline polymer with a degree of crystallinity of χ = 40 − 50% and has three
thermal transitions: a second-order transition corresponding to the glass transition of the amorphous
domains at Tg ≃ 50◦C, and two first-order transitions attributed to an order-to-order transition of
the crystals within the sample at Tαγ = 175− 195◦C and to the melting of the crystalline domains at
Tm = 210− 220◦C, respectively [31].
In Supplementary Fig. 10, the 1DWAXS intensity profile for the annealed nylon-6 fiber at 120, 185, and
240◦C is shown. The sample has different sets of peaks at the three temperatures, i.e., q(120◦C) = 7.2,
9.7, 13.5, 14.5, 16.0, 19.1 nm−1, q(180◦C) = 7.4, 9.7, 13.2, 15.0, 18.8 nm−1, and q(240◦C) = 8.8, 13.5,
17.9 nm−1. At 120◦C, the two equatorial peaks at q = 14.5 and 16.0 nm−1 merge together into a
single peak at q = 15.0 nm−1 when heated at 185◦C, and this peak vanishes when the sample is a
melt at 240◦C. This change in the WAXS pattern from 120 to 185◦C is attributed to a polymorphic
transformation from the α-phase to the γ-phase of nylon-6 [32].
The α-polymorphism of nylon-6 [33] corresponds to the monoclinic system (a = 4.82Å, b = 4.28Å,
c = 17.45Å, γ = 62.50◦) [34] with the polymer chains interacting in an antiparallel fashion by means

4



of hydrogen bonds [35]. Thus, the average lateral distances between the nylon-6 chains is d = 4.55Å,
while the length of the repeat unit in the polymer backbone is l = 8.72Å (q = 7.2 nm−1). The γ-
polymorphism of nylon-6 [33] belongs to the orthorhombic system (a = 4.86Å, b = 4.59Å, c = 16.98Å,
γ = 60.38◦), where the interchain average distance is d = 4.72Å and the repeat unit length decreases
to a value of l = 8.49Å (q = 7.4 nm−1). At temperatures above the melting point, e.g., 240◦, nylon-6
has an average polymer-polymer distance of d = 4.66Å.
From the values of the lattice parameters for each polymorphism, both the linear thermal expansion
coefficient along the fiber axis, α∥, and in the cross-section of the fiber, α⊥, were calculated. Nylon-6

has a positive value for α⊥ = 4.5 · 10−4K−1 (expansion factor 1.92 · 10−3ÅK−1 and corresponding
thermal strain 2.92%) from 120 to 185◦C and a negative value for α∥ = −4.1 · 10−4K−1 (−7.20 ·
10−3ÅK−1 and −2.68%) from 120 to 185◦C. Thus, nylon-6 fibers expand radially while contract
longitudinally with an estimated volumetric expansion of V = 3.03 · 10−1Å3K−1 (4.8 · 10−4K−1 or
3.09%).
Accounting for the fact that the degree of crystallinity is χ = 46 − 48%, cf. Supplementary Fig. 10,
this amounts to an effective thermal expansion coefficient of the nylon-6 fibers along the fiber axis of
α∥ = −1.93 · 10−4K−1 and a corresponding strain ∆ε = −1.26%. To cross check this value, derived
from structural data, we measured the longitudinal strain directly (by video analysis of the fiber’s
contour length) from rolling fiber experiments, cf. Supplementary Fig. 11. In the temperature range
from 120 to 180◦C, the total strain is about ∆ε = −1.5%, in rather good agreement with the one
found from structural data. Note, however, that the strain (and hence thermal expansion) deviates
from linearity.

Theoretical description

In the following we briefly describe our theoretical considerations. First, we show how temperature
gradients in the cross-section of the fiber lead to torque creation if the symmetry is broken (i.e. a zero
elastic energy mode exists) by the presence of an in-plane fiber curvature. We also discuss self-induced
fiber curving and the balance of the acting torques. Starting from the thermal diffusion equation with
angular advection, we then derive dynamic equations for the temperature gradients. This completes
the reduced description, summarized by three equations: the torque balance and two equations for the
thermal gradients/strains in-plane and normal to the plane, as already given in the main manuscript.
We then investigate the stationary rotating solutions of these equations, both for a fiber closed into
a circle and for a straight fiber. Finally, we describe a simple description of the torque creation and
energy storage of a fiber forced into a spiral path, cf. Fig. 3 in the main manuscript.

Torque creation, torque balance and thermally induced curvature

Let the heating plate define the X-Y -plane. When considering a cross-section of the fiber, without
restriction we can lay the fiber axis along Y . The fiber’s (vectorial) curvature is then along X,
κ⃗ · ex = κx = κ. This defines the lab frame.
The angle Φ (with respect to the X-axis, cf. Supplementary Fig. 12) describes a rotation of the fiber’s
cross-section along its axis (i.e. along the Y -axis) and introduces the co-rotating/internal coordinate
system

e1 = (cosΦ, sinΦ) , e2 = (− sinΦ, cosΦ) (Supp. Eq.1)

with the internal coordinates (X ′, Z ′) or in polar form (ρ, ϕ). In these internal coordinates, the axial
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strain in the cross-section (corresponding to the strain tensor component ϵY Y ) can be written as

ϵ(ρ, ϕ) = −ρ(κ1 cosϕ+ κ2 sinϕ) + ϵ̄− ϵT (ρ, ϕ) . (Supp. Eq.2)

The first contribution is due to bending, where the negative sign indicates compression within the
cross-section at the inwards curved side. ϵ̄ is the strain related to axial compression/elongation and
ϵT (ρ, ϕ) is the thermal prestrain due to axial thermal expansion/shortening. We can express the strain
solely via the curvature in the lab frame κ, using κ1 = κ⃗ · e1 = κ cosΦ , κ2 = κ⃗ · e2 = −κ sinΦ, to get

ϵ(ρ, ϕ) = −ρκ cos(ϕ+Φ) + ϵ̄− ϵT (ρ, ϕ) . (Supp. Eq.3)

The elastic energy (of the cross-section, i.e. energy per length for the fiber) then reads

E(κ, ϵ̄,Φ) =
Y

2

∫
(−ρκ cos(ϕ+Φ) + ϵ̄− ϵT (ρ, ϕ))

2 ρdρdϕ

=
1

2
Bκ2 +

Y

2

∫
(ϵ̄− ϵT (ρ, ϕ))

2 ρdρdϕ+ Y κ

∫
cos(ϕ+Φ)ϵT (ρ, ϕ) ρ

2dρdϕ

(Supp. Eq.4)

where Y is Young’s modulus and B = π
4Y R

4 is the bending stiffness.
The thermal axial prestrain is given by

ϵT (ρ, ϕ) = α∥∆T (ρ, ϕ) , (Supp. Eq.5)

with α∥ the linear thermal expansion coefficient along the fiber axis. Note that in writing this we have
neglected shear in the cross-section, torsional contributions etc. For the temperature distribution we
make the following ansatz,

∆T (ρ, ϕ) = ∆Tc
ρ

R
cosϕ+∆Ts

ρ

R
sinϕ+∆T0 , (Supp. Eq.6)

introducing the two principal temperature differences (‘modes’) ∆Tc and ∆Ts, in the rotating frame,
as well as a homogeneous offset ∆T0. Minimization of (Supp. Eq.4) w.r.t. ϵ̄ yields a relation between
the compressive/elongational and the thermal strain

ϵ̄ =
1

πR2

∫
ϵT (ρ, ϕ)ρdρdϕ , (Supp. Eq.7)

which upon insertion of (Supp. Eq.6) yields ϵ̄ = α∥∆T0, i.e. the homogeneous part of the thermal
stress is compensated. Insertion into the energy and performing all integrals yields

E(κ,Φ) = B

{
1

2
κ2 + α∥

κ

R
(∆Tc cosΦ−∆Ts sinΦ) +

α2
∥

2R2
(∆T 2

c +∆T 2
s )

}
, (Supp. Eq.8)

where the last term has no consequence for the dynamics (of κ and Φ).

The driving torque, generating the rolling motion if it overcomes the prevalent dissipation mecha-
nisms, is hence given by m = −∂E

∂Φ , implying

m = Bα∥
κ

R
(∆Tc sinΦ +∆Ts cosΦ) , (Supp. Eq.9)

where κ = κext =
1

Rext
is the – externally imposed – curvature of the ring.
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In case of an initially straight, linear, open fiber, (Supp. Eq.8) also yields the thermally induced
curvature. Namely, the curvature entering the driving torque is the stationary curvature κs – ne-
glecting initial, transient reshaping events of the linear fiber – that can be obtained via minimization,
0 = −∂E

∂κ , yielding

0 = B
(
−κ−

α∥

R
(∆Tc cosΦ−∆Ts sinΦ)

)
→ κs = −

α∥

R
(∆Tc cosΦ−∆Ts sinΦ) . (Supp. Eq.10)

We can simplify these results by transforming back to the lab frame. In fact, since(
X ′

Z ′

)
=

(
cosΦ sinΦ
− sinΦ cosΦ

)(
X
Z

)
(Supp. Eq.11)

we can rewrite (Supp. Eq.6) as

∆T (ρ, ϕ)−∆T0 = (∆Tc cosΦ−∆Ts sinΦ)
X

R
+ (∆Tc sinΦ +∆Ts cosΦ)

Z

R

= ∆Tx
X

R
+∆Tz

Z

R
, (Supp. Eq.12)

identifying the two principal temperature differences (‘modes’) ∆Tx and ∆Tz in the lab frame.
Introducing the thermal strain differences

x = α∥∆Tx , and z = α∥∆Tz , (Supp. Eq.13)

the driving torque and the stationary thermally-induced curvature hence read

m = B
κ

R
α∥∆Tz =

π

4
Y R3κz ,

κs = −
α∥∆Tx

R
= − x

R
, (Supp. Eq.14)

as given in the main manuscript.

Torque balance. To write down the balance of torques, we also have to account for the dominant
dissipation mechanisms.
In case of a closed fiber ring – forced into a circle of radius Rext – one has the typical strain ϵ ≃ κextR =
R/Rext ≃ 0.2mm

2cm = 10−2. Our mechanical characterization of nylon-6, Supplementary Fig. 8, implies
in the relevant temperature range a storage modulus of E′ = Y = 500− 800 MPa and a loss modulus
of E′′ = 10− 30 MPa. Hence the stress induced by the externally imposed curvature is of order σ =
E′ϵ ≃ 5−8 MPa, comparable to the loss modulus, and internal (viscoelastic) dissipation is important.
The associated dissipative torque can be estimated to be of order mdissip = E′′(|κext|R)R2, with E′′

the loss modulus, κextR the strain (wherein for dissipation the sign of the curvature does not matter)
and an additional factor R2 stemming from the cross-section. Note that in the relevant temperature
range, E′′ and hence the dissipation is independent of (angular) velocity, cf. Supplementary Fig. 8.
In contrast, in the case of an initially straight filament, the thermally induced curving strain, cf.
(Supp. Eq.14), is very small: ϵ ≃ κR = x = α∥∆Tx ≃ 10−4. Hence dissipation in the material due
to curving is negligible and rolling friction is the dominating dissipation mechanism. The dissipative
torque due to rolling friction is given by mfric = CrπR

2ρ̄gR, where Cr is the coefficient of rolling
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friction, πR2ρ̄g is the gravitational normal force per length (with ρ̄ the density and g the gravitational
acceleration) and R is the lever arm. Note that – again – dissipation is independent of (angular)
velocity.
Including the driving torque given in (Supp. Eq.14) and a possible external torque mext, the general
torque balance given in the main text,

m = mfric −mext , (Supp. Eq.15)

can be specified to

π

4
Y R3κextz = E′′|κext|R3 −mext (Supp. Eq.16)

for a closed filament, i.e. a ring, and to

π

4
Y R3κsz = Crρ̄gπR

3 −mext (Supp. Eq.17)

in case of an initially straight filament. In the case where rolling is absent, obviously the dissipative
contributions on the r.h.s. of (Supp. Eq.17) and (Supp. Eq.16) vanish.
It is interesting to note that – in the absence of external torques – in both cases the dependence on the
cross-section radius cancels. The main difference, which will be important later on for the dynamics,
is that for the ring the curvature is slaved by the externally imposed curvature κext =

1
Rext

, while for
the straight filament the thermally-induced curvature κs is ‘self-organized’.

Dynamics of the temperature distribution

To close the description, dynamic equations for the thermal strain differences as defined in (Supp. Eq.13),
i.e. for the principal temperature differences (‘modes’) ∆Tx, ∆Tz are needed. They can be derived
from the thermal diffusion equation for the cross-section that is turning with – in the stationary case
constant – angular frequency ω,

∂tT =
D

R2
∇2T + ω∂φT . (Supp. Eq.18)

This equation is in the lab frame [with (r, φ) the respective polar coordinates, with φ = 0 at the
contact with the plate, i.e. φ is the angle with respect to the −Z-axis] and we have scaled length by
the cross-section’s radius R, hence r ∈ [0, 1]. D is the thermal diffusivity of the polymeric material,

given by the ratio of thermal conductivity over the specific heat per unit volume, D =
kpol
Cpol

.

(Supp. Eq.18) has to be considered with the following boundary condition:

l(φ)

R
∂rT + (T − Text(φ)) = 0 at r = 1 , (Supp. Eq.19)

where l(φ) is a thermal length scale, given by the ratio of the thermal conductivity of the material
and the heat transfer coefficient, and Text(φ) is the externally imposed temperature.
At the bottom (contact to the heating plate) we assume Text = Ts and l(φ = 0) = 0, implying perfect
thermal contact.
At the top (contact to air), heat transfer to a fluid has to be accounted for, and one has Text = Tair
and l(φ = π) = lth =

kpol
h , where h = kair

d f(Ra, Pr) scales with the diameter d = 2R of the fiber in a
complicated fashion involving the Rayleigh number Ra(d) (and Prandtl number Pr) – already for a
stationary, non-rotating cylinder. We estimated that in the considered system lth ≃ R.
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To capture the main physics, we will need only the dominant modes of the temperature distribution.
Therefore we can assume a symmetry adapted version of the boundary conditions (at r = 1):

l(φ) = (1− cosφ)
lth
2
, (Supp. Eq.20)

Text(φ) =
Ts − Tair

2
cosφ+

Ts + Tair
2

, (Supp. Eq.21)

Like that, one indeed has l = 0 and T = Ts at the bottom (φ = 0) and l = lth and Tair at the top
(φ = π). For brevity we introduce Text(φ) = T− cosφ + T+, where 2T− = Ts − Tair = ∆Text is the
externally applied temperature difference.
As discussed in the last section, we are looking for a solution of the form

T = C(r) cosφ+ S(r) sinφ+ T0 . (Supp. Eq.22)

To proceed, it is convenient to use a symmetry-adapted polynomial system, namely Zernike-polyno-
mials, which are defined [36] as

Zmn = Rmn (r) cos(mφ) , Z
−m
n = Rmn (r) sin(mφ) (Supp. Eq.23)

with the radial polynomials Rmn , or explicitly as

Z0
0 = 1 , (Supp. Eq.24)

Z1
1 = 2r cosφ , Z−1

1 = 2r sinφ , (Supp. Eq.25)

Z1
3 =

√
8(3r3 − 2r) cosφ , Z−1

3 =
√
8(3r3 − 2r) sinφ . (Supp. Eq.26)

Note the following properties of the Zernike polynomials (with ∇2 the Laplacian):

∇2Z0
0 = 0 , ∇2Z±1

1 = 0 , ∇2Z±1
3 = 24Z1

1 . (Supp. Eq.27)

By inspection of the ansatz, (Supp. Eq.22), one could think that it is sufficient to use only the modes
∝ Z±1

1 . However, to be able to fulfill the boundary conditions, one also needs to account for ∝ Z±1
3 .

We hence write

C(r) cosφ = c1Z
1
1 + c2Z

1
3 , S(r) sinφ = s1Z

−1
1 + s2Z

−1
3 . (Supp. Eq.28)

Insertion of this ansatz into the boundary condition, (Supp. Eq.20), using cosφ sinφ = 1
2 sin(2φ) and

cos2 φ = 1
2(1 + cos(2φ)), sorting for modes and neglecting modes m ≥ 2 yields three equations for the

unknowns c2, s2, T0:

0 =
lth
2R

C ′(1) + (C(1)− T−) , (Supp. Eq.29)

0 =
lth
2R

S′(1) + S(1) (Supp. Eq.30)

0 = − lth
4R

C ′(1) + T0 − T+ . (Supp. Eq.31)

(Supp. Eq.31) yields

T0 =
lth
4R

C ′(1) + T+ . (Supp. Eq.32)
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(Supp. Eq.30) relates s2 to s1, and hence implies that the mode ∝ Z−1
3 is slaved to the mode ∝ Z−1

1 ,

s2 = −gs1 with g =
2
(
lth
R + 2

)
√
8
(
7 lthR + 2

) (Supp. Eq.33)

and the coupling constant g depending on the two length scales of the system, the fiber radius R and
the thermal length lth. Similarly from (Supp. Eq.29):

c2 = g(cstat − c1) with cstat =
T−

lth
R + 2

=
∆Text

2
(
lth
R + 2

) . (Supp. Eq.34)

We will see shortly that cstat, which is proportional to the thermal drive, describes the stationary
temperature distribution.
Now we insert the ansatz, (Supp. Eq.22) and (Supp. Eq.28), with c2, s2, T0 from above into the thermal
diffusion equation, (Supp. Eq.18). We then project on the mode Z−1

1 by performing
∫ 1
0 ...Z

−1
1 r dr of

the resulting equation, and analogously we project on Z1
1 , to get equations for s1 and c1 as follows:

ṡ1 = −24D

R2
gs1 − ωc1 , (Supp. Eq.35)

ċ1 = −24D

R2
gc1 +

24D

R2
gcstat + ωs1 . (Supp. Eq.36)

Inspecting the ansatz (Supp. Eq.22) and the definition of φ, c1 corresponds to ∆Tz and s1 to ∆Tx and
we can hence write the dynamics of the temperature field in the following simple form:

d

dt
∆Tx = −∆Tx

τ
− ω∆Tz , (Supp. Eq.37)

d

dt
∆Tz = q − ∆Tz

τ
+ ω∆Tx . (Supp. Eq.38)

Here τ is the characteristic time scale of thermal relaxation. The mode ∆Tz is in addition driven by
the thermal pumping, with q the pumping rate. Explicitly we get

τ =
R2

24Dg
=

R2

24D

√
8
(
7 lthR + 2

)
2
(
lth
R + 2

) , (Supp. Eq.39)

q =
24D

R2
gcstat =

24D

R2

∆Text
√
8
(
7 lthR + 2

) . (Supp. Eq.40)

If we consider (Supp. Eq.37) and (Supp. Eq.38) for the case without rotation (ω = 0), one gets for
long times ∆Tx = 0 and ∆Tz = qτ = cstat =

∆Text

2
(

lth
R

+2
) , which is the expected solution in this case.

To sum it up, introducing the thermal strains x = α∥∆Tx and z = α∥∆Tz, and the effective thermal
drive p = α∥q we arrive at the equations given in the main text:

ẋ = −x
τ
− ωz , (Supp. Eq.41)

ż = p− z

τ
+ ωx . (Supp. Eq.42)
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Together with the torque balance, in case of a rotating circular fiber given by (Supp. Eq.16),

π

4
Y R3κextz = E′′|κext|R3 −mext (Supp. Eq.43)

and in case of a rolling straight fiber, (Supp. Eq.17) with κs given by (Supp. Eq.14),

π

4
Y R3κsz = Crρ̄gπR

3 −mext , κs = − x

R
(Supp. Eq.44)

the dynamics is now completely determined.

Onset of motion: prescribed curvature (circle, spiral) vs. straight fiber

Fiber closed to a circle. In this case, one looks for solutions to the steady-state equations

π

4
Y R3 z

Rext
= mdissip(ω)−mext , (Supp. Eq.45)

0 = −x
τ
− ωz , (Supp. Eq.46)

0 = p− z

τ
+ ωx . (Supp. Eq.47)

where we inserted the externally prescribed curvature κext = 1/Rext and where the dissipative torque

is given by mdissip(ω = 0) = 0 and mdissip(ω ̸= 0) = E′′R3

Rext
for internal viscoelastic dissipation. The

trivial solution (for mext = 0) is given by ω = 0, x = 0 and z = pτ ; note that the l.h.s. of the torque
balance is finite, i.e. a fiber closed to a ring is under prestrain.
For mext = 0, one gets from the torque balance a stationary value for the strain difference normal
to the plane, zs = 4

π
E′′

Y , which mainly is the ratio of the loss vs. the storage modulus E′′/E′. Note
that the dependence on the externally imposed curvature cancels (in this leading order theory). The
nontrivial, finite ω-solution then reads

ω̄ =

√
p̄

zs
− 1 =

√
π

4

E′

E′′ p̄− 1 , (Supp. Eq.48)

where we scaled the frequency and the thermal pumping by the thermal relaxation time scale, ω̄ = ωτ
and p̄ = pτ . This branch exists when the argument of the square root becomes positive, hence for
p̄ > p̄c = zs =

4
π
E′′

E′ or

(α∥∆Text)c ≃
lth
R

E′′

E′ =
k

hR

E′′

E′ . (Supp. Eq.49)

The onset of motion is hence supercritical (i.e. continuous or second order) cf. Supplementary
Fig. 13a), in agreement with the experiments [cf. Fig. 2D in the main manuscript].
The torque-velocity relation for a fiber ring can be also obtained from (Supp. Eq.45)-(Supp. Eq.47)
by solving for mext and reads

mext =
π

4
Y
R3

Rext

(
zs −

p̄

1 + ω̄2

)
. (Supp. Eq.50)

Note that the torque is proportional to the imposed curvature mext ∝ κext = 1/Rext, which hence also
holds for the stalling torque.
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Fiber constrained to a spiral. The description of a spiral with prescribed curvature is conceptually
the same as for the closed circle, except that the the imposed curvature varies along the arc length
[κext(s) = 1/Rext(s)], which makes a closed description difficult. As the curvature does not vary much
for the spirals investigated in the main manuscript, in first order approximation one may use the
description of a fiber closed to a circle, using the mean curvature of the spiral.

Straight fiber. In this case, one has to look for nontrivial solutions to the steady-state equations

−bxz = mfric(ω)−mext , (Supp. Eq.51)

0 = −x
τ
− ωz , (Supp. Eq.52)

0 = p− z

τ
+ ωx . (Supp. Eq.53)

where we inserted the thermally induced curvature κs = − x
R , b = B/R2 = π

4Y R
2 and the dissipative

torque is given by mfric(ω = 0) = 0 and mfric(ω ̸= 0) = CrπR
3ρ̄g for rolling friction. The trivial

solution (for mext = 0) is again given by ω = 0, x = 0 and z = pτ . As the torque balance is fulfilled
identically, the open filament is torque free.
It is easy to show that for mext = 0 nontrivial solutions exist if

ω̄2 −
√
b

c
p̄
√
ω̄ + 1 = 0 , (Supp. Eq.54)

where we again scaled the frequency and the thermal pumping by the thermal relaxation time scale,
ω̄ = ωτ and p̄ = pτ . For sufficiently large drive (precisely for p̄ > p̄c = 4

33
1/4

√
c
b ≃ 1.755

√
c
b), two

branches of finite ω-solutions emerge, one stable and one unstable. The frequency at threshold is finite,
ω̄c =

1√
3
. Hence the onset of motion is subcritical (i.e. discontinuous or first order), cf. Supplementary

Fig. 13b), again in agreement with the experiments [cf. Fig. 5B in the main manuscript]. The difference
in the characteristics of the onset of rolling motion for a fiber closed in a circle (continuous) vs. a
straight fiber (discontinuous) lies in the fact that in the former case, the symmetry is already broken
by the externally imposed curvature, while in the latter this needs to be achieved via thermal curving.
We can conclude the following scalings for the self-propelled rolling motion, omitting numerical factors:
the frequency at onset scales as

ωc ≃
D

R2
. (Supp. Eq.55)

One can show that for large driving the scaling is even ωc ≃ 1
R7/3 . Note that this is stronger than the

experimentally measured dependence of the frequencies (cf. Fig. 5D in the main manuscript) which
yielded ω ≃ R−n with n = 0.75. This discrepancy is due to the effect discussed above (see ’Linear and
angular velocities’), i.e. deviations from the perfect fiber shape leading to slower angular velocities. For
the effective thermal drive at onset we get pc =

1
τ

√
c
b =

D
R2

√
σd
Y , where we introduced the dissipative

stress associated with rolling friction, σd = 4CrρgR. For the thermal strain at onset we hence get

(α∥∆Text)c ≃
lth
R

√
σd
Y

=
k

hR

√
σd
Y
, (Supp. Eq.56)

with the heat conductivity k = kpol and the heat transfer coefficient h.
Finally, one can solve (Supp. Eq.51)-(Supp. Eq.53) for the external torque to get the torque-velocity
relation

mext = c− bp̄2
ω̄

(1 + ω̄2)2
. (Supp. Eq.57)
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This formula was used to fit the experimental data in Fig. 5C in the main manuscript, where fibers
rolling on an inclined plane were studied.

Energy storage in spirals

We will apply here the approximation just discussed that the spiral can be described by its mean
curvature ⟨κext⟩ = 1/⟨Rext⟩. The angular velocity for free turning is then given by (Supp. Eq.48) as

ωfr = ω(mext = 0) = 1
τ

√
p̄
zs

− 1 and for the stalling torque, ms, one gets from the torque-velocity

relation, (Supp. Eq.50),

ms = mext(ω = 0) =
π

4
Y

R3

⟨Rext⟩
(zs − p̄) ∝ ⟨κext⟩ . (Supp. Eq.58)

We can immediately read off the scaling (for large thermal driving p̄≫ zs)

ms ≃ Y R3κextα∥∆Text , (Supp. Eq.59)

which for the total torque along the spiral, Ms = Lms, yields the one given in the main manuscript.
For simplicity we will approximate the torque-velocity relation by the straight line connecting (ω =
0,mext = −ms) to (ω = ωfr,mext = 0), i.e. we write

mext = −ms +
ω

ωfr
ms . (Supp. Eq.60)

Let us now consider the spiral fiber motor as shown in Fig. 3A in the main manuscript. The inner end
of the spiral is clamped, the outer end is free to move. In the confined spiral geometry, the thermally
driven torque induces rotations along the local tangent, with the fiber accumulating twist all along the
spiral path. We can interpret the approximate torque-velocity relation, (Supp. Eq.60), as an equation
for the twist angle of the fiber, ψ(s), with s the arc length along the spiral path: we identify ω = ψ̇
and mext = Cψ′′, where C = γB = γ π4Y R

4 is the torsional stiffness, γ = 1/(1 + ν) and ν Poisson’s
ratio. Rewriting then leads to

ψ̇ = Dψψ
′′ + ωfr , (Supp. Eq.61)

which has the form of a diffusion equation with a source term. The effective diffusion/stiffness reads
Dψ = Cωfr

ms
∝ ⟨κ⟩−1.

The general solution of (Supp. Eq.61) for the boundary conditions ψ(0) = 0 and ψ′(L) = 0 – corre-
sponding to one fixed end and one free end, with L the length of the fiber – and the initial condition
ψ(t = 0) = 0 is given by

ψ(s, t) =
2ωfr

LDψ

∞∑
n=0

sin(kns)

k3n

(
1− exp

(
−Dψk

2
nt
))
, (Supp. Eq.62)

where kn = (2n+1)π
2L . The fits to the experimental data [cf. inset of Fig. 3C in the main manuscript]

show that a one-mode approximation, taking only the slowest mode k0 =
π
2L into account,

ψ(s, t) =
16L2ωfr

π3Dψ
sin

(πs
2L

)(
1− exp

(
−
Dψπ

2

4L2
t

))
, (Supp. Eq.63)
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is sufficient. For the number of turns we hence have

N(t) =
ψ(L, t)

2π
=

8L2ωfr

π4Dψ

(
1− exp

(
−
Dψπ

2

4L2
t

))
, (Supp. Eq.64)

which was fitted to the data [cf. inset of Fig. 3C in the main manuscript] to get Dψ and ωfr, and finally

via Dψ = Cωfr
ms

the total stalling force Ms = Lms as displayed in Fig. 3D in the main manuscript.
For the stored energy [as shown in Fig. 3C in the main manuscript] one calculates

E =
C

2

∫ L

0

(
ψ′)2 ds = 16CL3ω2

fr

π4D2
ψ

(
1− exp

(
−
Dψπ

2

4L2
t

))2

. (Supp. Eq.65)

For t→ ∞ and large thermal driving, p̄≫ zs, using Dψ = Cωfr
ms

and (Supp. Eq.59) we get the scaling

E ≃
CL3ω2

fr

D2
ψ

≃ L3

Y R4
m2
s = Y κ2ext

(
α∥∆Text

)2
R2L3 . (Supp. Eq.66)

Dividing by the fiber volume V ≃ R2L we get the scaling mentioned in the main manuscript.
Note that the formulas given here, although they fit the data very well, are only approximate due to
the use of the mean curvature of the spiral and of the simplification of the torque-velocity relation.

Supplementary figures

Supplementary figures 1 to 13.
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Supplementary Fig. 1: Collective spontaneous self-healing of defects in a circular fiber motor from
nylon-6 rotating at 190◦C. A strong deformation defect (kink) emerges at time t = 7 s and persists
for several seconds. The continued collective rotation of the fiber leads to a complete self-healing at a
later time (t = 30 s). See also supplementary video 6.

Supplementary Fig. 2: Continuous operation long time-testing of a spiral fiber motor. The fiber
(nylon-6) is guided to a 13 turn, 0.6 mm diameter spiral and runs at T=160◦C. The magenta line is a

fit to f(t) = f0 exp
(
− t
tr

)
, with f0 = 0.63 Hz and with the exponential frequency relaxation time of

tr = 34h (1.28× 105 s).
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Supplementary Fig. 3: Slow annealing of a 800 µm nylon fiber at 110◦C results in some transient
reshaping and eventually within the time course of 10-20 seconds leads to an ideally straight and
rolling fiber. See also supplementary video 4.

Supplementary Fig. 4: Exposing a nylon fiber (800 µm) directly to an elevated temperature (180◦C)
results in rapid uncontrolled reshaping. The final shape remains stationary and does not move or roll
over the surface. See also supplementary video 4.
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Supplementary Fig. 5: Rolling velocity as a function of the plate temperature for PVDF fibers of
diameter 0.5 mm.

Supplementary Fig. 6: a) Dried starch rods (spaghetti) propelled on a heating plate. The lower panel
shows a kymograph (space-time plot) of the motion orthogonal to the fiber axis. b) Silicone rubber
rod, superposition of images. The rolling trajectory is slightly curved due to the slight conical shape
of the sample. c) Collective motion of several nylon-6 rods confined between two spacers. The lower
panel again shows the kymograph. See also supplementary video 3.
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Supplementary Fig. 7: Measurement of linear and angular velocity. a) A nylon-6 fiber of radius 60µm
rolling at 185◦C. b) Line-scan along the red line in a). In addition to a constant velocity linear motion,
the fiber displays a velocity modulation (yellow arrows) in phase with its rotary motion. On the right,
the effective radius of the fiber is shown, deduced from the ratio of linear and angular velocity.

10
−1

10
0

10
1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Frequency (Hz)

E
’ (

M
P

a)

 

 
  30 °C
  50 °C
  70 °C
  90 °C
 110 °C
 130 °C
 150 °C
 170 °C
 190 °C

10
−1

10
0

10
1

0

50

100

150

200

250

300

350

400

450

500

Frequency (Hz)

E
" 

(M
P

a)

 

 
  30 °C
  50 °C
  70 °C
  90 °C
 110 °C
 130 °C
 150 °C
 170 °C
 190 °C

Supplementary Fig. 8: Mechanical characterization of nylon-6 fibers. Left: The storage modulus
vs. frequency for temperatures from 30 to 190◦C. Right: The loss modulus vs. frequency for the same
temperature range.
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Supplementary Fig. 9: 2D WAXS intensity profile for the annealed nylon-6 fiber at a) 120◦C, b)
185◦C, and c) 240◦C showing the anisotropy of the signals before melting above 220◦C. Note: The
fiber axis lies in the vertical direction.

Supplementary Fig. 10: 1D WAXS intensity profile for the annealed nylon-6 fiber at a) 120◦C, b)
185◦C, and c) 240◦C and the corresponding fitting curve (light green curve). The red (equatorial),
blue (45 degrees oblique) and dark green (meridional) curves correspond to the scattering profiles from
the sections in Supplementary Fig. 9. The orange curves in c) are the amorphous peaks contributing
to the signal for the polymer melt.
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Supplementary Fig. 11: Relative longitudinal strain of rolling fiber samples with diameters 0.6 mm
and lengths between 10 and 12 cm.

Supplementary Fig. 12: Sketch of the geometry. Shown is a fiber that is confined in the X-Y -plane
(by its own weight). When we consider a cross-section (in the X-Z-plane), we can assume without
restriction that the curvature is along X. The co-rotating frame is spanned by the vectors e1 and e2,
with the angle Φ between e1 and ex.
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b)a)

Supplementary Fig. 13: a) Continuous onset of rotation of a fiber closed to a ring as given by
(Supp. Eq.48). Shown is the scaled angular velocity, ω̄, as a function of rescaled effective driving p̄/zs.
b) Discontinuous onset of rolling motion for a straight fiber as given by (Supp. Eq.54). Shown is the

scaled angular velocity, ω̄, as a function of rescaled effective driving,
√

b
c p̄. The black branch is stable,

the red one unstable.
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