Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic β-Sheet-rich Amyloidogenic Peptide

Antoni Sánchez-Ferrer', Jozef Adamcik', Stephan Handschin', Shu Hui Hiew², Ali Miserezz ${ }^{23, *}$ and Raffaele Mezzenga ${ }^{1, *}$
${ }^{\text {' Department of Health Sciences \& Technology, ETH Zurich, Switzerland CH-8092 }}$
${ }^{2}$ School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
${ }^{3}$ School of Biological Sciences, Nanyang Technological University, Singapore 637551
${ }^{4}$ Department of Materials Science, ETH Zurich, Switzerland CH-8093

Table of Contents

Figure SI-1
Figure SI-2
Figure SI-3
Figure SI-4
Figure SI-5
Figure SI-6
Figure SI-7
Figure SI-8
Figure SI-9
Figure SI-10
Figure SI-11
Figure SI-12
Figure SI-13
Figure SI-14
Figure SI-15
Figure SI-16
Form factors $\mathrm{P}(\mathrm{q})$
page 2
page 3
page 4
page 5
page 6
page 7
page 8
page 9
page 10
page 11
page 12
page 13
page 14
page 15
page 16
page 17
page 18

Figure SI-1. The chemical structure of $\mathbf{A 1 H 1}$, and the dimensions of the fully extended peptide sequence and the hydrophilic domain.

Figure SI-2. 2D and 1D WAXS intensity profile for (A) the annealed $\mathbf{A 1 H 1}$ sample at $120{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, and (B) the dried $\mathbf{A} \mathbf{1 H} 1$ sample from the $2 \mathrm{wt}-\mathrm{F} \mathbf{A 1 H 1}$ dispersion.

Figure SI-3. FTIR spectrum and peptide secondary structure population analysis for (A) the annealed $\mathbf{A 1 H 1}$ sample at $120^{\circ} \mathrm{C}$ under nitrogen atmosphere, and (B) the dried $\mathbf{A 1 H 1}$ sample from the $2 \mathrm{wt}-\%$ dispersion. Note: β : β-sheets; α : α-helices; r : random coils.
A)

B)

C)

Figure SI-4. 2D and 1D SAXS intensity profile for A1H1 dispersions in acetonitrile/water at (A) 0.5 wt\%, (B) $1 \mathrm{wt}-\%$, and (C) $2 \mathrm{wt}-\%$. Notes: capillaries were placed horizontally; the green fitting curve correspond to the form factor $P(q)$.

Figure SI-5. 2D and 1D WAXS intensity profile for $\mathbf{A 1 H 1}$ dispersions in acetonitrile/water at (A) 0.5 wt$\%$, (B) 1 wt-\%, and (C) $2 \mathrm{wt}-\%$.

Figure SI-6. (A) Test-tube-inversion method for the 2 wt -\% A1H1 dispersion in acetonitrile/water showing the gel-like characteristic of such sample. (B) Polarized light experiment for the $0.5 \mathrm{wt}-\%, 1$ $\mathrm{wt}-\%$, and $2 \mathrm{wt}-\% \mathbf{A 1 H 1}$ dispersions in acetonitrile/water. Note: the edged of the capillaries are highlighted for a better visualization.

Figure SI-7. Structure factor $S(q)$ for the non-birefringent (1 wt-\%, black curve) and the birefringent (2 wt-\%, blue curve) A1H1 sample in acetonitrile/water dispersion.

Figure SI-8. AFM height (left) and amplitude (right) profile image of the deposited (A) 1 wt - $\%$, (B) $2 \mathrm{wt}-$ $\%$, and (C) $4 \mathrm{wt}-\% \mathbf{A 1 H 1}$ dispersion in acetonitrile/water. Note: scale bar is 300 nm .

Figure SI-9. AFM height profile image of the deposited 1 wt-\% A1H1 dispersion in acetonitrile/water showing the local alignment due to deposition.

Figure SI-10. AFM height profile image (left) and cross section height profile (right) of the deposited (A) $1 \mathrm{wt}-\%,(B) 2 \mathrm{wt}-\%$, and (C) $4 \mathrm{wt}-\% \mathbf{A 1 H 1}$ dispersion in acetonitrile/water. Note: scale bar is 60 nm .

Figure SI-11. 2D and 1D SAXS intensity profiles for (A) the A1H1 gel in acetonitrile/water from the 2 wt-\% A1H1 dispersion, and (B) the corresponding dry gel. Note: the green fitting curve correspond to the form factor $P(q)$.

Figure SI-12. 2D and 1D WAXS intensity profiles for (A) the A1H1 gel in acetonitrile/water from the 2 wt-\% A1H1 dispersion, and (B) the corresponding dry gel.

Figure SI-13. AFM height (left) and amplitude (right) profile images of dry gel showing the different type of fibers upon solvent removal. Note: scale bar is $1 \mu \mathrm{~m}$.

Figure SI-14. Polarized light optical microscope image of the dry gel. Note: scale bar is $500 \mu \mathrm{~m}$

Figure SI-15. AFM height profile images (left) and cross section height profiles (right) of the dry gel. Note: scale bar is 100 nm .

Figure SI-16. CryoSEM images of the deposited $2 \mathrm{wt}-\% \mathbf{A 1 H 1}$ dispersion in acetonitrile/water.

Form factor for a hollow poly-core two-shell cylinder object

The scattering intensity for a colloidal system can be described as $I(q)=N P(q) S(q)$, where N is proportional to the concentration and scattering volume, $P(q)$ is the form factor, and $S(q)$ is the structure factor.

The form factor for a hollow poly-core two-shell cylinder is described by the following expression:

$$
\begin{aligned}
P(q)=k \int_{0}^{\pi / 2}[& \left(\rho_{\text {core }}-\rho_{\text {in }}\right) V_{\text {core }} \frac{2 J_{1}\left(q r_{\text {core }} \sin \alpha\right)}{q r_{\text {core }} \sin \alpha} \frac{\sin \left(q \frac{L}{2} \cos \alpha\right)}{q \frac{L}{2} \cos \alpha} \\
& +\left(\rho_{\text {in }}-\rho_{\text {out }}\right) V_{\text {in }} \frac{2 J_{1}\left(q r_{\text {in }} \sin \alpha\right)}{q r_{\text {in }} \sin \alpha} \frac{\sin \left(q \frac{L}{2} \cos \alpha\right)}{q \frac{L}{2} \cos \alpha} \\
& \left.+\left(\rho_{\text {out }}-\rho_{0}\right) V_{\text {out }} \frac{2 J_{1}\left(q r_{\text {out }} \sin \alpha\right)}{q r_{\text {out }} \sin \alpha} \frac{\sin \left(q \frac{L}{2} \cos \alpha\right)}{q \frac{L}{2} \cos \alpha}\right]^{2} \sin \alpha \mathrm{~d} \alpha
\end{aligned}
$$

Where k is the scaling factor, $\rho_{\text {core, }} \rho_{\text {in }}, \rho_{\text {out }}$ and ρ_{0} is the scattering length density for the core, inner shell, outer shell and solvent, respectively; $V_{\text {core }} V_{\text {in }}$ and $V_{\text {out }}$ is the volume of the core, inner shell, and outer shell, respectively; $r_{\text {core }} r_{\text {in }}$ and $r_{\text {out }}$ is the radius of the core, inner shell and outer shell, respectively; $t_{\text {in }}$ and $t_{\text {out }}$ is the thickness of the inner shell and outer shell, respectively; and L the length of the cylindrical object.

The relationship between the radii and thicknesses are:

$$
\begin{gathered}
r_{\text {in }}=r_{\text {core }}+t_{\text {in }} \\
r_{\text {out }}=r_{\text {core }}+t_{\text {in }}+t_{\text {out }}
\end{gathered}
$$

The corresponding volumes are:

$$
\begin{gathered}
V_{\text {core }}=\pi r_{\text {core }}^{2} L \\
V_{\text {in }}=\pi\left(r_{\text {core }}+t_{\text {in }}\right)^{2} L \\
V_{\text {out }}=\pi\left(r_{\text {core }}+t_{\text {in }}+t_{\text {out }}\right)^{2} L
\end{gathered}
$$

