Controlling Supramolecular Chiral Nanostructures by Self-Assembly of a Biomimetic β -Sheet-rich Amyloidogenic Peptide

Antoni Sánchez-Ferrer¹, Jozef Adamcik¹, Stephan Handschin¹, Shu Hui Hiew², Ali Miserez^{2,3,*} and Raffaele Mezzenga^{1,4,*}

¹ Department of Health Sciences & Technology, ETH Zurich, Switzerland CH-8092

² School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798

- ³ School of Biological Sciences, Nanyang Technological University, Singapore 637551
- ⁴ Department of Materials Science, ETH Zurich, Switzerland CH-8093

Table of Contents

Figure SI-1	page 2
Figure SI-2	page 3
Figure SI-3	page 4
Figure SI-4	page 5
Figure SI-5	page 6
Figure SI-6	page 7
Figure SI-7	page 8
Figure SI-8	page 9
Figure SI-9	page 10
Figure SI-10	page 11
Figure SI-11	page 12
Figure SI-12	page 13
Figure SI-13	page 14
Figure SI-14	page 15
Figure SI-15	page 16
Figure SI-16	page 17
Form factors P(q)	page 18

Figure SI-1. The chemical structure of **A1H1**, and the dimensions of the fully extended peptide sequence and the hydrophilic domain.

Figure SI-2. 2D and 1D WAXS intensity profile for **(A)** the annealed **A1H1** sample at 120 °C under nitrogen atmosphere, and **(B)** the dried **A1H1** sample from the 2 wt-% **A1H1** dispersion.

Figure SI-3. FTIR spectrum and peptide secondary structure population analysis for (**A**) the annealed **A1H1** sample at 120 °C under nitrogen atmosphere, and (**B**) the dried **A1H1** sample from the 2 wt-% dispersion. *Note*: β : β -sheets; α : α -helices; r: random coils.

Figure SI-4. 2D and 1D SAXS intensity profile for **A1H1** dispersions in acetonitrile/water at **(A)** 0.5 wt-%, **(B)** 1 wt-%, and **(C)** 2 wt-%. *Notes:* capillaries were placed horizontally; the green fitting curve correspond to the form factor P(q).

Figure SI-5. 2D and 1D WAXS intensity profile for **A1H1** dispersions in acetonitrile/water at **(A)** 0.5 wt-%, **(B)** 1 wt-%, and **(C)** 2 wt-%.

Figure SI-6. (A) Test-tube-inversion method for the 2 wt-% **A1H1** dispersion in acetonitrile/water showing the gel-like characteristic of such sample. **(B)** Polarized light experiment for the 0.5 wt-%, 1 wt-%, and 2 wt-% **A1H1** dispersions in acetonitrile/water. *Note:* the edged of the capillaries are highlighted for a better visualization.

Figure SI-7. Structure factor S(q) for the non-birefringent (1 wt-%, black curve) and the birefringent (2 wt-%, blue curve) **A1H1** sample in acetonitrile/water dispersion.

Figure SI-8. AFM height (left) and amplitude (right) profile image of the deposited **(A)** 1 wt-%, **(B)** 2 wt-%, and **(C)** 4 wt-% **A1H1** dispersion in acetonitrile/water. *Note*: scale bar is 300 nm.

Figure SI-9. AFM height profile image of the deposited 1 wt-% **A1H1** dispersion in acetonitrile/water showing the local alignment due to deposition.

Figure SI-10. AFM height profile image (left) and cross section height profile (right) of the deposited (A) 1 wt-%, (B) 2 wt-%, and (C) 4 wt-% A1H1 dispersion in acetonitrile/water. Note: scale bar is 60 nm.

60

d (nm)

Figure SI-11. 2D and 1D SAXS intensity profiles for (A) the A1H1 gel in acetonitrile/water from the 2 wt-% A1H1 dispersion, and (B) the corresponding dry gel. *Note:* the green fitting curve correspond to the form factor P(q).

Figure SI-12. 2D and 1D WAXS intensity profiles for **(A)** the **A1H1** gel in acetonitrile/water from the 2 wt-% **A1H1** dispersion, and **(B)** the corresponding dry gel.

Figure SI-13. AFM height (left) and amplitude (right) profile images of dry gel showing the different type of fibers upon solvent removal. *Note*: scale bar is $1 \mu m$.

Figure SI-14. Polarized light optical microscope image of the dry gel. Note: scale bar is 500 μm

Figure SI-15. AFM height profile images (left) and cross section height profiles (right) of the dry gel. *Note*: scale bar is 100 nm.

Figure SI-16. CryoSEM images of the deposited 2 wt-% A1H1 dispersion in acetonitrile/water.

Form factor for a hollow poly-core two-shell cylinder object

The scattering intensity for a colloidal system can be described as I(q) = NP(q)S(q), where N is proportional to the concentration and scattering volume, P(q) is the form factor, and S(q) is the structure factor.

The form factor for a hollow poly-core two-shell cylinder is described by the following expression:

$$P(q) = k \int_{0}^{\pi/2} \left[(\rho_{core} - \rho_{in}) V_{core} \frac{2J_{1}(qr_{core}\sin\alpha)}{qr_{core}\sin\alpha} \frac{\sin\left(q\frac{L}{2}\cos\alpha\right)}{q\frac{L}{2}\cos\alpha} + (\rho_{in} - \rho_{out}) V_{in} \frac{2J_{1}(qr_{in}\sin\alpha)}{qr_{in}\sin\alpha} \frac{\sin\left(q\frac{L}{2}\cos\alpha\right)}{q\frac{L}{2}\cos\alpha} + (\rho_{out} - \rho_{0}) V_{out} \frac{2J_{1}(qr_{out}\sin\alpha)}{qr_{out}\sin\alpha} \frac{\sin\left(q\frac{L}{2}\cos\alpha\right)}{q\frac{L}{2}\cos\alpha} \right]^{2} \sin\alpha \, d\alpha$$

Where k is the scaling factor, ρ_{core} , ρ_{in} , ρ_{out} and ρ_0 is the scattering length density for the core, inner shell, outer shell and solvent, respectively; V_{core} , V_{in} and V_{out} is the volume of the core, inner shell, and outer shell, respectively; r_{core} , r_{in} and r_{out} is the radius of the core, inner shell and outer shell, respectively; t_{in} and t_{out} is the thickness of the inner shell and outer shell, respectively; and *L* the length of the cylindrical object.

The relationship between the radii and thicknesses are:

$$r_{in} = r_{core} + t_{in}$$
$$r_{out} = r_{core} + t_{in} + t_{out}$$

The corresponding volumes are:

$$V_{core} = \pi r_{core}^2 L$$
$$V_{in} = \pi (r_{core} + t_{in})^2 L$$
$$V_{out} = \pi (r_{core} + t_{in} + t_{out})^2 L$$