Anisotropic Wood-Water Interactions Determined by Gravimetric Vapor Sorption Experiments

Antoni Sánchez-Ferrer*, Max Engelhardt, Klaus Richter

Technical University of Munich, School of Life Sciences, Chair of Wood Science, D-80797 Munich, Germany

Antoni Sánchez-Ferrer*:	orcid.org/0000-0002-1041-0324; email: sanchez@hfm.tum.de
Max Engelhardt:	orcid.org/0000-0002-9781-7476; email: engelhardt@hfm.tum.de
Klaus Richter:	orcid.org/0000-0002-6583-0254; email: <u>richter@hfm.tum.de</u>

Figure SI-1. The three wood orthotropic directions in beech disk samples	3
Figure SI-2. 3D printed DVT cub	3
Figure SI-3. DVS adsorption/desorption experiment for disk1-L (DSE model)	4
Figure SI-4. DVS adsorption/desorption experiment for disk2-R (DSE model)	5
Figure SI-5. DVS adsorption/desorption experiment for disk3-T (DSE model)	6
Figure SI-6. DVS adsorption/desorption experiment for disk1-L (RP model)	7
Figure SI-7. DVS adsorption/desorption experiment for disk2-R (RP model)	8
Figure SI-8. DVS adsorption/desorption experiment for disk3-T (RP model)	9
Figure SI-9. Kinetic constant and diffusion coefficient	10
Figure SI-10. Diffusion coefficient comparison between DSE, RP and SSE models	11
Figure SI-11. Relative directional kinetic constant and relative directional diffusion coefficient	12
Figure SI-12. Moisture sorption isotherms (GAB* and SSO model)	13
Figure SI-13. Sorption coefficient	14
Figure SI-14. DVT experiments (exponential-linear model)	16
Figure SI-15. DVT experiments (linear model)	17
Figure SI-16. Permeability, diffusion and sorption coefficients, and transmission rate values	20
Figure SI-17. Relative directional permeability and diffusion coefficients	21
Figure SI-18. Transmission rate values	22

Table SI-1. DSE fitting parameters, kinetic constant and diffusion coefficient for disk1-L	4
Table SI-2. DSE fitting parameters, kinetic constant and diffusion coefficient for disk2-R	5
Table SI-3. DSE fitting parameters, kinetic constant and diffusion coefficient for disk3-T	6
Table SI-4. RP fitting parameters, kinetic constant and diffusion coefficient for disk1-L	7
Table SI-5. RP fitting parameters, kinetic constant and diffusion coefficient for disk2-R	8
Table SI-6. RP fitting parameters, kinetic constant and diffusion coefficient for disk3-T	9
Table SI-7. GAB* and SSO fitting parameters, and sorption sites molar concentration	13
Table SI-8. Sorption coefficient from MSI	15
Table SI-9. DVT fitting parameters and coefficients for disk1-L	18
Table SI-10. DVT fitting parameters and coefficients for disk2-R	18
Table SI-11. DVT fitting parameters and coefficients for disk3-T	19

Figure SI-1. Beech disks with the three wood orthotropic directions perpendicular to the disk plane: a) disk1-L – longitudinal -, b) disk2-R – radial - and c) disk3-T - tangential.

Figure SI-2. Cross-section along the cylindrical axis of the 3D-printed DVT cup. The upper component is used to attach the wood sample between two O-ring seals while the bottom component is used either as a water reservoir or as a drying agent container.

Figure SI-3. DVS adsorption/desorption experiment for the disk1-L. The green lines are the fitting curves following the double stretched exponential (DSE) model.

Table SI-1. Double stretched exponential fitting parameters ($(m/m_{dry})_{eq}$, A₁, A₂, τ_1 , τ_2 , β_1 , β_2) and the equivalent lifetime (τ), stretched exponential factor (β) and kinetic constant (k), and the diffusion coefficient (D) for each adsorption/desorption step in the DVS experiment for the disk1-L.

RH [%]	(m/m _{dry}) _{eq}	A1	A ₂	τ_1 [min]	τ₂ [min]	β1	β₂	τ [min]	β	k [s ⁻¹]	D [m²/s]	R
10.82	1.0234	-0.01913	-0.00139	23.96	106.9	1.052	1.210	26.42	0.893	6.31E-04	1.37E-10	0.9996
21.31	1.0388	-0.01041	-0.00492	16.88	54.52	1.037	1.069	23.82	0.771	7.00E-04	1.52E-10	0.9996
31.21	1.0525	-0.00771	-0.00584	16.86	62.65	0.954	0.982	29.89	0.729	5.58E-04	1.21E-10	0.9999
41.34	1.0665	-0.00729	-0.00663	19.72	76.72	0.896	0.937	38.69	0.715	4.31E-04	9.35E-11	0.9998
50.61	1.0813	-0.00650	-0.00852	22.50	83.26	0.851	0.897	49.32	0.731	3.38E-04	7.34E-11	0.9999
60.11	1.0988	-0.00809	-0.00889	44.30	115.3	0.877	0.745	68.57	0.650	2.43E-04	5.28E-11	0.9996
69.81	1.1199	-0.00389	-0.01824	50.41	76.22	1.363	0.757	66.99	0.734	2.49E-04	5.41E-11	0.9998
79.16	1.1456	-0.00366	-0.02231	69.84	103.0	1.490	0.786	93.09	0.765	1.79E-04	3.90E-11	0.9999
89.45	1.1860	-0.01406	-0.02662	96.41	180.3	1.240	0.777	131.9	0.714	1.26E-04	2.75E-11	0.9994
96.52	1.2735	-0.03053	-0.04221	155.3	516.8	1.021	1.031	323.3	0.830	5.15E-05	1.12E-11	0.9998
89.75	1.2211	0.01459	0.01263	71.18	317.5	0.992	1.055	150.6	0.747	1.11E-04	2.41E-11	0.9992
79.42	1.1786	0.02516	0.01801	70.01	390.4	0.961	0.836	136.2	0.576	1.22E-04	2.66E-11	0.9995
70.19	1.1514	0.01418	0.01685	49.92	223.1	0.869	0.810	113.2	0.636	1.47E-04	3.20E-11	0.9998
60.66	1.1254	0.01615	0.01193	42.55	282.8	0.838	0.851	98.23	0.578	1.70E-04	3.69E-11	0.9991
51.21	1.1055	0.00980	0.01041	40.53	239.2	0.831	0.845	108.0	0.625	1.54E-04	3.35E-11	0.9992
41.85	1.0883	0.00767	0.01106	21.77	130.6	0.865	0.857	68.76	0.661	2.42E-04	5.26E-11	0.9990
31.61	1.0709	0.00824	0.00969	20.38	108.0	0.888	0.884	53.36	0.665	3.12E-04	6.78E-11	0.9992
21.57	1.0530	0.01026	0.00820	20.95	95.47	0.912	0.927	41.83	0.670	3.98E-04	8.64E-11	0.9997
10.83	1.0322	0.01402	0.00673	25.56	84.39	0.941	0.918	35.60	0.694	4.68E-04	1.01E-10	0.9992
0.00	1.0000	0.01726	0.01537	32.99	119.2	0.983	1.001	61.36	0.756	2.72E-04	5.88E-11	0.9998

Figure SI-4. DVS adsorption/desorption experiment for the disk2-R. The green lines are the fitting curves following the double stretched exponential (DSE) model.

Table SI-2. Double stretched exponential fitting parameters ($(m/m_{dry})_{eq}$, A₁, A₂, τ_1 , τ_2 , β_1 , β_2) and the equivalent lifetime (τ), stretched exponential factor (β) and kinetic constant (k), and the diffusion coefficient (D) for each adsorption/desorption step in the DVS experiment for the disk2-R.

RH [%]	(m/m _{dry}) _{eq}	A1	A ₂	τ ₁ [min]	τ₂ [min]	β1	β2	τ [min]	β	k [s ⁻¹]	D [m²/s]	R
10.70	1.0221	-0.00407	-0.01669	21.30	106.1	0.975	0.918	83.90	0.823	1.99E-04	3.92E-11	0.9997
21.25	1.0378	-0.00145	-0.01504	14.72	80.55	1.051	0.872	72.75	0.832	2.29E-04	4.55E-11	0.9999
31.17	1.0514	-0.00141	-0.01273	15.62	78.65	0.950	0.882	70.26	0.838	2.37E-04	4.73E-11	0.9999
41.29	1.0649	-0.00063	-0.01345	13.79	75.08	1.147	0.849	71.29	0.829	2.34E-04	4.70E-11	1.0000
50.56	1.0790	-0.00128	-0.01317	16.30	83.94	0.885	0.885	76.13	0.846	2.19E-04	4.43E-11	1.0000
60.11	1.0955	-0.00552	-0.01158	57.24	115.5	0.907	0.792	89.34	0.739	1.87E-04	3.80E-11	0.9999
69.74	1.1159	-0.00424	-0.01736	63.85	106.6	1.183	0.775	91.76	0.745	1.82E-04	3.73E-11	0.9998
79.04	1.1409	-0.00119	-0.02486	93.01	120.2	1.130	0.844	116.6	0.836	1.43E-04	2.98E-11	1.0000
89.36	1.1832	-0.01962	-0.02273	113.8	326.0	1.174	0.715	171.5	0.596	9.72E-05	2.07E-11	0.9994
96.50	1.2705	-0.0356	-0.04154	166.4	584.9	1.007	1.308	370.2	0.997	4.50E-05	9.80E-12	0.9992
89.66	1.2178	0.01415	0.01496	72.38	273.8	0.998	1.008	148.1	0.768	1.13E-04	2.40E-11	0.9997
79.40	1.1775	0.01877	0.02226	72.73	241.9	1.003	0.800	130.9	0.651	1.27E-04	2.65E-11	0.9999
70.17	1.1493	0.01333	0.01736	56.51	221.7	0.887	0.803	121.3	0.650	1.37E-04	2.83E-11	0.9999
60.68	1.1251	0.01008	0.01646	36.35	158.7	0.881	0.844	94.27	0.689	1.77E-04	3.60E-11	0.9997
51.21	1.1047	0.00708	0.01318	37.35	177.9	0.869	0.827	108.7	0.682	1.53E-04	3.10E-11	0.9996
41.88	1.0871	0.00724	0.01183	27.76	143.3	0.871	0.884	83.76	0.707	1.99E-04	4.00E-11	0.9994
31.59	1.0698	0.00690	0.01127	26.53	123.6	0.887	0.896	73.98	0.723	2.25E-04	4.50E-11	0.9995
21.52	1.0517	0.00699	0.01167	27.86	113.8	0.891	0.906	71.01	0.744	2.35E-04	4.66E-11	0.9997
10.82	1.0310	0.00600	0.01530	27.43	102.9	0.905	0.896	74.28	0.780	2.24E-04	4.43E-11	0.9998
0.00	0.9993	0.00871	0.02382	43.26	208.7	0.923	0.852	146.1	0.733	1.14E-04	2.24E-11	0.9996

Figure SI-5. DVS adsorption/desorption experiment for the disk3-T. The green lines are the fitting curves following the double stretched exponential (DSE) model.

Table SI-3. Double stretched exponential fitting parameters ($(m/m_{dry})_{eq}$, A₁, A₂, τ_1 , τ_2 , β_1 , β_2) and the equivalent lifetime (τ), stretched exponential factor (β) and kinetic constant (k), and the diffusion coefficient (D) for each adsorption/desorption step in the DVS experiment for the disk3-T.

RH [%]	(m/m _{dry}) _{eq}	A ₁	A ₂	τ ₁ [min]	τ₂ [min]	β1	β₂	τ [min]	β	k [s⁻¹]	D [m²/s]	R
10.80	1.0208	-0.00527	-0.01418	22.94	88.91	0.944	0.939	65.27	0.816	2.55E-04	5.49E-11	0.9998
21.31	1.0361	-0.00233	-0.01332	15.24	76.61	0.995	0.884	64.14	0.815	2.60E-04	5.64E-11	0.9999
31.19	1.0494	-0.00158	-0.01208	14.27	74.78	0.976	0.872	65.28	0.820	2.55E-04	5.59E-11	0.9999
41.29	1.0625	-0.00161	-0.01224	15.48	78.86	0.948	0.867	68.85	0.816	2.42E-04	5.35E-11	0.9999
50.56	1.0766	-0.00545	-0.00885	44.91	112.0	0.822	0.847	79.89	0.759	2.09E-04	4.66E-11	1.0000
60.13	1.0918	-0.01161	-0.00436	71.83	179.4	0.823	0.793	87.68	0.690	1.90E-04	4.29E-11	0.9990
69.72	1.1102	-0.01578	-0.00394	68.36	268.8	0.858	0.878	82.71	0.641	2.02E-04	4.62E-11	0.9977
78.90	1.1319	-0.00348	-0.01970	72.25	123.1	1.194	0.794	109.6	0.768	1.52E-04	3.55E-11	0.9999
89.20	1.1748	-0.01905	-0.02448	114.0	391.8	1.134	0.723	200.9	0.587	8.30E-05	2.00E-11	0.9999
96.50	1.2636	-0.05602	-0.02556	203.0	694.2	1.037	1.537	329.7	0.971	5.06E-05	1.25E-11	0.9990
89.48	1.2132	0.01649	0.01195	78.48	445.8	0.982	1.034	172.1	0.675	9.68E-05	2.33E-11	0.9983
79.21	1.1743	0.02184	0.01931	70.81	333.1	0.958	0.813	139.4	0.601	1.20E-04	2.80E-11	0.9997
70.09	1.1440	0.02165	0.01264	68.72	654.3	0.828	0.895	167.3	0.535	9.96E-05	2.28E-11	0.9975
60.63	1.1230	0.01206	0.01486	37.15	175.8	0.864	0.879	92.56	0.681	1.80E-04	4.07E-11	0.9996
51.18	1.1028	0.00685	0.01334	31.78	162.7	0.846	0.870	102.4	0.718	1.63E-04	3.64E-11	0.9995
41.85	1.0847	0.00676	0.01231	26.58	142.1	0.870	0.870	85.85	0.705	1.94E-04	4.29E-11	0.9994
31.57	1.0672	0.00668	0.01150	26.81	128.7	0.872	0.889	78.22	0.721	2.13E-04	4.67E-11	0.9995
21.48	1.0493	0.00663	0.01214	27.14	114.2	0.872	0.889	73.08	0.739	2.28E-04	4.95E-11	0.9997
10.77	1.0287	0.00606	0.01500	25.85	107.5	0.887	0.901	76.15	0.776	2.19E-04	4.70E-11	0.9998
0.00	0.9977	0.00994	0.02156	41.74	207.7	0.888	0.890	136.7	0.743	1.22E-04	2.59E-11	0.9995

Figure SI-6. DVS adsorption/desorption experiment for the disk1-L. The green lines are the fitting curves following the Ritger-Peppas (RP) model.

Table SI-4. Ritger-Peppas fitting parameters ($(m/m_{dry})_{eq}$, τ_{rp} , n_{rp}), the corresponding kinetic constant (k_{rp}) and diffusion parameter (D_{rp}), the equivalent kinetic constant (k'), and diffusion coefficient (D') for each adsorption/desorption step in the DVS experiment for the disk1-L.

RH [%]	(m/m _{dry}) _{eq}	τ _{rp} [min]	k _{rp} [s⁻¹]	n	D _{rp} [m²/s]	k′ [s⁻¹]	β'	D' [m²/s]
10.82	1.0234	35.36	4.71E-04	0.930	1.02E-10	6.62E-04	1.068	1.43E-10
21.31	1.0388	32.90	5.07E-04	0.886	1.10E-10	7.23E-04	1.018	1.57E-10
31.21	1.0525	40.02	4.16E-04	0.813	9.03E-11	6.15E-04	0.937	1.33E-10
41.34	1.0665	53.79	3.10E-04	0.753	6.73E-11	4.73E-04	0.870	1.03E-10
50.61	1.0813	72.10	2.31E-04	0.711	5.02E-11	3.63E-04	0.823	7.88E-11
60.11	1.0988	105.74	1.58E-04	0.703	3.43E-11	2.49E-04	0.814	5.40E-11
69.81	1.1199	110.97	1.50E-04	0.718	3.27E-11	2.35E-04	0.830	5.10E-11
79.16	1.1456	151.22	1.10E-04	0.736	2.40E-11	1.70E-04	0.850	3.70E-11
89.45	1.1860	203.46	8.19E-05	0.803	1.78E-11	1.22E-04	0.926	2.65E-11
96.52	1.2735	377.2	4.42E-05	0.903	9.63E-12	6.27E-05	1.037	1.37E-11
89.75	1.2211	133.4	1.25E-04	0.951	2.72E-11	1.74E-04	1.091	3.79E-11
79.42	1.1786	183.42	9.09E-05	0.766	1.98E-11	1.38E-04	0.884	3.00E-11
70.19	1.1514	179.15	9.30E-05	0.660	2.02E-11	1.52E-04	0.766	3.30E-11
60.66	1.1254	143.24	1.16E-04	0.658	2.53E-11	1.90E-04	0.763	4.13E-11
51.21	1.1055	147.05	1.13E-04	0.672	2.46E-11	1.83E-04	0.779	3.98E-11
41.85	1.0883	98.56	1.69E-04	0.657	3.67E-11	2.76E-04	0.763	6.00E-11
31.61	1.0709	71.20	2.34E-04	0.714	5.08E-11	3.67E-04	0.826	7.95E-11
21.57	1.0530	57.43	2.90E-04	0.753	6.29E-11	4.43E-04	0.870	9.61E-11
10.83	1.0322	51.87	3.21E-04	0.800	6.96E-11	4.78E-04	0.923	1.03E-10
0.00	1.0000	83.73	1.99E-04	0.815	4.31E-11	2.94E-04	0.939	6.36E-11

Figure SI-7. DVS adsorption/desorption experiment for the disk2-R. The green lines are the fitting curves following the Ritger-Peppas (RP) model.

Table SI-5. Ritger-Peppas fitting parameters ($(m/m_{dry})_{eq}$, τ_{rp} , n_{rp}), the corresponding kinetic constant (k_{rp}) and diffusion parameter (D_{rp}), the equivalent kinetic constant (k'), and diffusion coefficient (D') for each adsorption/desorption step in the DVS experiment for the disk2-R.

RH [%]	(m/m _{dry}) _{eq}	τ _{rp} [min]	k _{rp} [s⁻¹]	n	D _{rp} [m²/s]	k′ [s⁻¹]	β'	D' [m²/s]
10.70	1.0221	108.7	1.53E-04	0.767	3.03E-11	2.32E-04	0.886	4.58E-11
21.25	1.0378	110.3	1.51E-04	0.716	3.00E-11	2.36E-04	0.829	4.69E-11
31.17	1.0514	106.7	1.56E-04	0.720	3.12E-11	2.44E-04	0.833	4.86E-11
41.29	1.0649	110.9	1.50E-04	0.712	3.02E-11	2.36E-04	0.824	4.73E-11
50.56	1.0790	118.1	1.41E-04	0.715	2.85E-11	2.21E-04	0.827	4.46E-11
60.11	1.0955	143.2	1.16E-04	0.705	2.37E-11	1.83E-04	0.816	3.74E-11
69.74	1.1159	149.1	1.12E-04	0.722	2.30E-11	1.74E-04	0.835	3.58E-11
79.04	1.1409	189.7	8.79E-05	0.740	1.83E-11	1.35E-04	0.855	2.82E-11
89.36	1.1832	252.8	6.59E-05	0.815	1.40E-11	9.73E-05	0.939	2.07E-11
96.50	1.2705	459.4	3.63E-05	0.890	7.90E-12	5.17E-05	1.023	1.13E-11
89.66	1.2178	129.9	1.28E-04	0.974	2.73E-11	1.77E-04	1.116	3.78E-11
79.40	1.1775	186.7	8.93E-05	0.773	1.86E-11	1.35E-04	0.892	2.81E-11
70.17	1.1493	185.4	8.99E-05	0.687	1.85E-11	1.44E-04	0.795	2.95E-11
60.68	1.1251	141.9	1.17E-04	0.681	2.39E-11	1.88E-04	0.789	3.84E-11
51.21	1.1047	147.3	1.13E-04	0.697	2.29E-11	1.79E-04	0.807	3.62E-11
41.88	1.0871	122.6	1.36E-04	0.674	2.73E-11	2.19E-04	0.781	4.40E-11
31.59	1.0698	105.1	1.59E-04	0.704	3.16E-11	2.50E-04	0.815	4.99E-11
21.52	1.0517	102.1	1.63E-04	0.720	3.24E-11	2.55E-04	0.833	5.06E-11
10.82	1.0310	108.2	1.54E-04	0.728	3.04E-11	2.39E-04	0.842	4.72E-11
0.00	0.9993	203.6	8.19E-05	0.705	1.61E-11	1.29E-04	0.816	2.53E-11

Figure SI-8. DVS adsorption/desorption experiment for the disk3-T. The green lines are the fitting curves following the Ritger-Peppas (RP) model.

Table SI-6. Ritger-Peppas fitting parameters ($(m/m_{dry})_{eq}$, τ_{rp} , n_{rp}), the corresponding kinetic constant (k_{rp}) and diffusion parameter (D_{rp}), the equivalent kinetic constant (k'), and diffusion coefficient (D') for each adsorption/desorption step in the DVS experiment for the disk3-T.

RH [%]	(m/m _{dry}) _{eq}	τ _{rp} [min]	k _{rp} [S ⁻¹]	n	D _{rp} [m²/s]	k′ [s⁻¹]	β'	D' [m²/s]
10.80	1.0208	84.79	1.97E-04	0.791	4.22E-11	2.94E-04	0.912	6.31E-11
21.31	1.0361	91.61	1.82E-04	0.729	3.95E-11	2.82E-04	0.843	6.12E-11
31.19	1.0494	96.56	1.73E-04	0.717	3.78E-11	2.70E-04	0.829	5.90E-11
41.29	1.0625	105.7	1.58E-04	0.702	3.48E-11	2.49E-04	0.813	5.50E-11
50.56	1.0766	123.7	1.35E-04	0.702	3.01E-11	2.13E-04	0.813	4.75E-11
60.13	1.0918	145.0	1.15E-04	0.690	2.60E-11	1.83E-04	0.799	4.14E-11
69.72	1.1102	139.2	1.20E-04	0.712	2.74E-11	1.88E-04	0.823	4.30E-11
78.90	1.1319	176.9	9.42E-05	0.723	2.20E-11	1.47E-04	0.836	3.43E-11
89.20	1.1748	281.4	5.92E-05	0.797	1.43E-11	8.82E-05	0.919	2.12E-11
96.50	1.2636	386.1	4.32E-05	0.937	1.07E-11	6.04E-05	1.076	1.50E-11
89.48	1.2132	129.9	1.28E-04	0.977	3.09E-11	1.77E-04	1.120	4.27E-11
79.21	1.1743	197.4	8.44E-05	0.745	1.97E-11	1.30E-04	0.860	3.03E-11
70.09	1.1440	243.5	6.85E-05	0.630	1.57E-11	1.14E-04	0.732	2.63E-11
60.63	1.1230	158.4	1.05E-04	0.632	2.38E-11	1.76E-04	0.734	3.97E-11
51.18	1.1028	154.5	1.08E-04	0.658	2.41E-11	1.76E-04	0.764	3.93E-11
41.85	1.0847	122.2	1.36E-04	0.677	3.02E-11	2.19E-04	0.784	4.85E-11
31.57	1.0672	110.2	1.51E-04	0.698	3.31E-11	2.40E-04	0.808	5.25E-11
21.48	1.0493	106.7	1.56E-04	0.702	3.39E-11	2.47E-04	0.813	5.35E-11
10.77	1.0287	109.4	1.52E-04	0.720	3.27E-11	2.38E-04	0.832	5.10E-11
0.00	0.9977	190.2	8.76E-05	0.703	1.86E-11	1.38E-04	0.814	2.94E-11

Figure SI-9. a) Adsorption and b) desorption kinetic constant (k), and c) adsorption and d) desorption diffusion coefficient (D) using the DSE model for the three beech disks: disk1-L, disk2-R and disk3-T.

Figure SI-10. Adsorption/desorption diffusion coefficient (D) as a function of the relative humidity for the three beech disks: a) disk1-L, b) disk-R, and c) disk3-T, using the double stretched exponential (DSE) model, the Ritger-Peppas (RP) model and the equivalent to the single stretched exponential function (SSE) from the Ritger-Peppas model.

Figure SI-11. a) Adsorption and c) desorption relative directional kinetic constant (k_{rel} : L/R, L/T and R/T), and c) adsorption and d) desorption relative directional diffusion coefficient (D_{rel} : L/R, L/T and R/T) for the three beech disks: disk1-L, disk2-R and disk3-T.

Figure SI-12. (Top) Moisture adsorption isotherm, fitting of the data following the GAB* model ($0 \le a_w \le 0.99$), and deconvolution following the SSO model (bound water, blue; non-bound water violet). (Bottom) Both the moisture adsorption (red) and desorption (green) isotherms and the corresponding hysteresis factor η for the three beech disks: a) disk1-L ($\eta = 1.24$), b) disk2-R ($\eta = 1.26$), and c) disk3-T ($\eta = 1.28$).

Table SI-7. GAB* fitting parameters (M_0 , C, K and N), the SSO fitting parameters: exponent (n), the maximum bound water moisture capacity (M_{SSO}^0), and the sorption sites molar concentration (SSO) for the three beech disks.

	M ₀	С	К	Ν	n	Msso ⁰	SSO
							[mmol/g]
disk1-L	0.0773	4.47	0.670	0.00447	0.837	0.141	7.80
disk2-R	0.0712	4.76	0.692	0.00407	0.830	0.134	7.43
disk3-T	0.0695	4.76	0.677	0.00484	0.819	0.128	7.13

Figure SI-13. Sorption coefficient (S) profile in the adsorption (red curve) and desorption (orange curve) process for the three beech disks: a) disk1-L, b) disk2-R, and c) disk3-T.

disk1-L		(disk2-R	disk3-T		
RH (%)	S [mol/(m ³ Pa)]	RH (%)	S [mol/(m ³ Pa)]	RH (%)	S [mol/(m ³ Pa)]	
10.8	2.57	10.7	2.87	10.8	2.18	
21.3	2.18	21.3	2.48	21.3	1.94	
31.2	2.03	31.2	2.32	31.2	1.82	
41.3	1.95	41.3	2.22	41.3	1.75	
50.6	1.95	50.6	2.21	50.6	1.76	
60.1	2.01	60.1	2.26	60.1	1.78	
69.8	2.11	69.7	2.38	69.7	1.85	
79.2	2.28	79.0	2.57	78.9	1.96	
89.5	2.60	89.4	2.98	89.2	2.32	
96.5	3.70	96.5	4.27	96.5	3.39	
89.8	3.17	89.7	3.63	89.5	2.92	
79.4	2.86	79.4	3.32	79.2	2.68	
70.2	2.73	70.2	3.14	70.1	2.47	
60.7	2.59	60.7	3.01	60.6	2.43	
51.2	2.56	51.2	2.96	51.2	2.39	
41.9	2.60	41.9	2.99	41.9	2.38	
31.6	2.75	31.6	3.15	31.6	2.49	
21.6	2.98	21.5	3.40	21.5	2.66	
10.8	3.57	10.8	4.01	10.8	3.04	

Table SI-8. Sorption coefficient (S) calculated from the moisture sorption isotherms for the three beech disks: disk1-L, disk2-R, and disk3-T.

Figure SI-14. Moisture transmission experiments on the three beech disks under different conditions: inner RH-value of 100% against outer RH-value of a) 0% and b) 65%; inner RH-value of 0% against outer RH-value of c) 65% and d) 100%. The lines are the fits to the experimental data using the exponential-linear fitting function (Eq. 4).

Figure SI-15. Moisture transmission experiments on the three beech disks under different conditions: inner RH-value of 100% against outer RH-value of a) 0% and b) 65%; inner RH-value of 0% against outer RH-value of c) 65% and d) 100%. The lines are linear fits to the experimental data in the linear regime.

	inwy ac amerene rela	ence mannancy contains		
	100% vs 0%-RH	100% vs 65%-RH	0% vs 65%-RH	0% vs 100%-RH
Δр [Ра]	2862	1002	1860	2862
P [mol/(m s Pa)]	(3.66 ± 0.04) 10 ⁻¹⁰	(3.87 ± 0.04) 10 ⁻¹⁰	(4.38 ± 0.04) 10 ⁻¹⁰	(4.04 ± 0.04) 10 ⁻¹⁰
TR [mol/(m ² s)]	(9.95 ± 0.02) 10 ⁻⁴	(3.69 ± 0.01) 10 ⁻⁴	(7.76 ± 0.01) 10 ⁻⁴	(11.00 ± 0.02) 10 ⁻⁴
ṁ [mol/s]	(9.044 ± 0.001) 10 ⁻⁸	(3.298 ± 0.001) 10 ⁻⁸	(6.829 ± 0.001) 10 ⁻⁸	(9.993 ± 0.001) 10 ⁻⁸
$D_{\theta} [m^2/s]$	(1.01 ± 0.02) 10 ⁻¹⁰	(1.54 ± 0.10) 10 ⁻¹⁰	(0.97 ± 0.03) 10 ⁻¹⁰	(0.78 ± 0.03) 10 ⁻¹⁰
$D_{\tau} [m^2/s]$	(4.72 ± 0.10) 10 ⁻¹⁰	(2.32 ± 0.20) 10 ⁻¹⁰	(2.79 ± 0.10) 10 ⁻¹⁰	(1.32 ± 0.10) 10 ⁻¹⁰
D _{MSI} [m ² /s]	$(1.6 \pm 0.1) \ 10^{-10}$	$(1.6 \pm 0.1) \ 10^{-10}$	(2.0 ± 0.2) 10 ⁻¹⁰	$(1.8 \pm 0.1) \ 10^{-10}$
S_{θ} [mol/(m ³ Pa)]	3.6 ± 0.1	2.5 ± 0.2	4.5 ± 0.1	5.2 ± 0.2
S_{τ} [mol/(m ³ Pa)]	0.77 ± 0.03	1.7 ± 0.1	1.57 ± 0.05	3.1 ± 0.1
S _{MSI} [mol/(m ³ Pa)]	2.25 ± 0.05	2.39 ± 0.05	2.16 ± 0.04	2.25 ± 0.05
θ [min]	30 ± 1	20 ± 1	31 ± 1	39 ± 1
τ [min]	31 ± 1	62 ± 5	52 ± 1	110 ± 3
β	0.80 ± 0.02	0.72 ± 0.06	1.14 ± 0.04	0.90 ± 0.03
M _w (%)	4.2 ± 0.1	1.0 ± 0.1	3.2 ± 0.1	5.9 ± 0.2
Area (%)	8.4	1.0	3.6	8.4

Table SI-9. Permeability coefficient (P), transmission rate (TR), mass rate (\dot{m}), diffusion coefficient (D_{θ}, D_{τ}, D_{MSI}), sorption coefficient (S_{θ}, S_{τ}, S_{MSI}), lagtime (θ), lifetime (τ), stretched exponential factor (β), and moisture capacity (M_w) at different relative humidity conditions for the disk1-L.

Table SI-10. Permeability coefficient (P), transmission rate (TR), mass rate (m), diffusion coefficient (D_{θ}, D_{τ}, D_{MSI}), sorption coefficient (S_{θ}, S_{τ}, S_{MSI}), lagtime (θ), lifetime (τ), stretched exponential factor (β), and moisture capacity (M_w) at different relative humidity conditions for the disk2-R.

	100% vs 0%-RH	100% vs 65%-RH	0% vs 65%-RH	0% vs 100%-RH
Δ p [Pa]	2862	1002	1860	2862
P [mol/(m s Pa)]	(1.35 ± 0.01) 10 ⁻¹⁰	$(2.08 \pm 0.02) \ 10^{-10}$	(8.59 ± 0.09) 10 ⁻¹¹	(1.25 ± 0.01) 10 ⁻¹⁰
TR [mol/(m ² s)]	(3.80 ± 0.01) 10 ⁻⁴	(2.06 ± 0.01) 10 ⁻⁴	(1.59 ± 0.01) 10 ⁻⁴	(3.52 ± 0.01) 10 ⁻⁴
ṁ [mol/s]	(3.393 ± 0.002) 10 ⁻⁸	(1.823 ± 0.001) 10 ⁻⁸	(1.391 ± 0.001) 10 ⁻⁸	(3.142 ± 0.001) 10 ⁻⁸
$D_{\theta} [m^2/s]$	(1.80 ± 0.04) 10 ⁻¹¹	(1.94 ± 0.05) 10 ⁻¹¹	(1.23 ± 0.03) 10 ⁻¹¹	(3.59 ± 0.08) 10 ⁻¹¹
$D_{\tau} [m^2/s]$	(1.13 ± 0.02) 10 ⁻¹⁰	$(4.81 \pm 0.01) \ 10^{-11}$	(1.22 ± 0.03) 10 ⁻¹⁰	(1.90 ± 0.04) 10 ⁻¹⁰
D _{MSI} [m ² /s]	(5.3 ± 0.3) 10 ⁻¹¹	(7.6 ± 0.4) 10 ⁻¹¹	(3.5 ± 0.2) 10 ⁻¹¹	(4.9 ± 0.2) 10 ⁻¹¹
S_{θ} [mol/(m ³ Pa)]	7.5 ± 0.2	10.7 ± 0.3	7.0 ± 0.2	3.5 ± 0.1
S_{τ} [mol/(m ³ Pa)]	1.19 ± 0.03	4.3 ± 0.1	0.70 ± 0.02	0.66 ± 0.02
S _{MSI} [mol/(m ³ Pa)]	2.56 ± 0.03	2.73 ± 0.03	2.44 ± 0.03	2.56 ± 0.03
θ [min]	160 ± 1	147 ± 2	228 ± 2	80 ± 1
τ [min]	120 ± 1	279 ± 5	108 ± 1	71 ± 1
β	0.96 ± 0.01	0.74 ± 0.01	0.74 ± 0.01	1.05 ± 0.02
M _w (%)	7.5 ± 0.1	3.7 ± 0.1	4.4 ± 0.1	3.5 ± 0.1
Area (%)	8.2	4.8	3.5	8.2

	100% vs 0%-RH	100% vs 65%-RH	0% vs 65%-RH	0% vs 100%-RH
∆р [Ра]	2862	1002	1860	2862
P [mol/(m s Pa)]	(0.98 ± 0.01) 10 ⁻¹⁰	(1.89 ± 0.02) 10 ⁻¹⁰	(5.57 ± 0.05) 10 ⁻¹¹	(0.99 ± 0.01) 10 ⁻¹⁰
TR [mol/(m² s)]	(2.62 ± 0.01) 10 ⁻⁴	(1.79 ± 0.01) 10 ⁻⁴	(0.99 ± 0.01) 10 ⁻⁴	(2.63 ± 0.01) 10 ⁻⁴
ṁ [mol/s]	(2.315 ± 0.002) 10 ⁻⁸	(1.568 ± 0.002) 10 ⁻⁸	(0.859 ± 0.001) 10 ⁻⁸	(2.327 ± 0.001) 10 ⁻⁸
D _θ [m²/s]	(1.47 ± 0.03) 10 ⁻¹¹	(2.05 ± 0.04) 10 ⁻¹¹	(1.37 ± 0.03) 10 ⁻¹¹	(2.86 ± 0.06) 10 ⁻¹¹
D _τ [m²/s]	(8.10 ± 0.20) 10 ⁻¹¹	(6.38 ± 0.20) 10 ⁻¹¹	(1.13 ± 0.02) 10 ⁻¹⁰	(2.04 ± 0.05) 10 ⁻¹⁰
D _{MSI} [m²/s]	(5.0 ± 0.2) 10 ⁻¹¹	(9.0 ± 0.4) 10 ⁻¹¹	$(3.0 \pm 0.1) \ 10^{-11}$	(5.0 ± 0.2) 10 ⁻¹¹
S _θ [mol/(m ³ Pa)]	6.7 ± 0.1	9.2 ± 0.2	4.1 ± 0.1	3.4 ± 0.1
S _τ [mol/(m ³ Pa)]	1.21 ± 0.03	3.0 ± 0.1	0.49 ± 0.01	0.48 ± 0.01
S _{MSI} [mol/(m ³ Pa)]	1.96 ± 0.02	2.10 ± 0.03	1.88 ± 0.02	1.96 ± 0.02
θ [min]	217 ± 1	152 ± 1	224 ± 2	112 ± 1
τ [min]	186 ± 1	231 ± 4	127 ± 1	74 ± 1
β	1.02 ± 0.01	1.00 ± 0.01	0.94 ± 0.01	1.06 ± 0.02
M _w (%)	8.0 ± 0.1	3.8 ± 0.1	3.1 ± 0.1	4.1 ± 0.1
Area (%)	7.9	4.5	3.3	7.9

Table SI-11. Permeability coefficient (P), transmission rate (TR), mass rate (\dot{m}), diffusion coefficient (D_{θ}, D_{τ}, D_{MSI}), sorption coefficient (S_{θ}, S_{τ}, S_{MSI}), lagtime (θ), lifetime (τ), stretched exponential factor (β), and moisture capacity (M_w) at different relative humidity conditions for the disk3-T.

Figure SI-16. a) Mass rate (\dot{m}), b) transmission rate (TR), c) permeability coefficient (P), d,e,f) diffusion coefficient (D_{θ}, D_{τ}, D_{MSI}), g,h,i) sorption coefficient (S_{θ}, S_{τ}, S_{MSI}), j) lagtime (θ), k) lifetime (τ), and l) stretched exponential factor (β) for the three beech disks with the moisture transmission parallel to the longitudinal (L), radial (R), and tangential (T) direction at different relative humidity conditions. Note: in the x-axis, the first value refers to the inner RH-value (cup) and the second one to the outer RH-value (gas flow).

Figure SI-17. a) Relative directional permeability coefficient (P_{rel} : L/R, L/T and R/T), b) relative directional diffusion coefficient obtained from the lagtime value θ (D_{θ} : L/R, L/T and R/T), and c) relative diffusion coefficient obtained from the moisture sorption isotherms (D_{MSI} : L/R, L/T and R/T) at different relative humidity conditions for the three beech disks: disk1-L, disk2-R and disk3-T. Note: in the x-axis, the first value refers to the inner RH-value (cup) and the second one to the outer RH-value (gas flow).

Figure SI-18. Transmission rate (TR) as a function of the vapor pressure difference at different relative humidity conditions for the three beech disks: disk1-L, disk2-R and disk3-T. Note: the green curve is representing the theoretical linear behavior.